Wrapped asymmetric Laplace distribution explained

In probability theory and directional statistics, a wrapped asymmetric Laplace distribution is a wrapped probability distribution that results from the "wrapping" of the asymmetric Laplace distribution around the unit circle. For the symmetric case (asymmetry parameter κ = 1), the distribution becomes a wrapped Laplace distribution. The distribution of the ratio of two circular variates (Z) from two different wrapped exponential distributions will have a wrapped asymmetric Laplace distribution. These distributions find application in stochastic modelling of financial data.

Definition

The probability density function of the wrapped asymmetric Laplace distribution is:[1]

\begin{align} fWAL(\theta;m,λ,\kappa) &

infty
=\sum
k=-infty

fAL(\theta+2\pik,m,λ,\kappa)\\[10pt] &=\dfrac{\kappaλ}{\kappa2+1} \begin{cases} \dfrac{e-(\theta-m)λ\kappa

} - \dfrac & \text \theta \geq m \\[12pt] \dfrac - \dfrac & \text\theta

where

fAL

is the asymmetric Laplace distribution. The angular parameter is restricted to

0\le\theta<2\pi

. The scale parameter is

λ>0

which is the scale parameter of the unwrapped distribution and

\kappa>0

is the asymmetry parameter of the unwrapped distribution.

The cumulative distribution function

FWAL

is therefore:

FWAL(\theta;m,λ,\kappa)=\dfrac{\kappaλ}{\kappa2+1} \begin{cases} \dfrac{emλ\kappa(1-e-\thetaλ\kappa)}{λ\kappa(e2\piλ\kappa-1)}+\dfrac{\kappae-mλ/\kappa(1-e\thetaλ/\kappa)}{λ(e-2\piλ/\kappa-1)}&if\theta\leqm\\ \dfrac{1-e-(\theta-m)λ\kappa

}+\dfrac+\dfrac+\dfrac &\text \theta > m\end

Characteristic function

The characteristic function of the wrapped asymmetric Laplace is just the characteristic function of the asymmetric Laplace function evaluated at integer arguments:

\varphi
n(m,λ,\kappa)=λ2ei
\left(n-iλ/\kappa\right)\left(n+iλ\kappa\right)

which yields an alternate expression for the wrapped asymmetric Laplace PDF in terms of the circular variable z=ei(θ-m) valid for all real θ and m:

\begin{align} fWAL(z;m,λ,\kappa) &=

1
2\pi
infty
\sum
n=-infty
-n
\varphi
n(0,λ,\kappa)z

\\[10pt] &=

λ
\pi(\kappa+1/\kappa)

\begin{cases} rm{Im}\left(\Phi(z,1,-iλ\kappa)-\Phi\left(z,1,iλ/\kappa\right)\right)-

1
2\pi

&ifz\ne1 \\[12pt] \coth(\piλ\kappa)+\coth(\piλ/\kappa) &ifz=1 \end{cases} \end{align}

where

\Phi

is the Lerch transcendent function and coth is the hyperbolic cotangent function.

Circular moments

In terms of the circular variable

z=ei\theta

the circular moments of the wrapped asymmetric Laplace distribution are the characteristic function of the asymmetric Laplace distribution evaluated at integer arguments:

\langle

n\rangle=\varphi
z
n(m,λ,\kappa)

The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:

\langlez\rangle =

λ2ei
\left(1-iλ/\kappa\right)\left(1+iλ\kappa\right)

The mean angle is

(-\pi\le\langle\theta\rangle\leq\pi)

\langle\theta\rangle=\arg(\langlez\rangle)=\arg(ei)

and the length of the mean resultant is

R=|\langlez\rangle|=

λ2
\sqrt{\left(12\right)\left(\kappa2+λ2\right)
\kappa2
}.

The circular variance is then 1 − R

Generation of random variates

If X is a random variate drawn from an asymmetric Laplace distribution (ALD), then

Z=ei

will be a circular variate drawn from the wrapped ALD, and,

\theta=\arg(Z)+\pi

will be an angular variate drawn from the wrapped ALD with

0<\theta\leq2\pi

.

Since the ALD is the distribution of the difference of two variates drawn from the exponential distribution, it follows that if Z1 is drawn from a wrapped exponential distribution with mean m1 and rate &lambda;/κ and Z2 is drawn from a wrapped exponential distribution with mean m2 and rate &lambda;κ, then Z1/Z2 will be a circular variate drawn from the wrapped ALD with parameters (m1 - m2, &lambda;, κ) and

\theta=\arg(Z1/Z2)+\pi

will be an angular variate drawn from that wrapped ALD with

-\pi<\theta\leq\pi

.

See also

Notes and References

  1. Jammalamadaka . S. Rao . Kozubowski . Tomasz J. . 2004 . New Families of Wrapped Distributions for Modeling Skew Circular Data . Communications in Statistics – Theory and Methods . 33 . 9 . 2059–2074 . 10.1081/STA-200026570. 2011-06-13 .