Whispering-gallery wave explained
Whispering-gallery waves, or whispering-gallery modes, are a type of wave that can travel around a concave surface. Originally discovered for sound waves in the whispering gallery of St Paul's Cathedral, they can exist for light and for other waves, with important applications in nondestructive testing, lasing, cooling and sensing, as well as in astronomy.
Introduction
Whispering-gallery waves were first explained for the case of St Paul's Cathedral circa 1878[1] by Lord Rayleigh, who revised a previous misconception[2] [3] that whispers could be heard across the dome but not at any intermediate position. He explained the phenomenon of travelling whispers with a series of specularly reflected sound rays making up chords of the circular gallery. Clinging to the walls the sound should decay in intensity only as the inverse of the distance — rather than the inverse square as in the case of a point source of sound radiating in all directions. This accounts for the whispers being audible all round the gallery. Rayleigh developed wave theories for St Paul's in 1910[4] and 1914.[5] Fitting sound waves inside a cavity involves the physics of resonance based on wave interference; the sound can exist only at certain pitches as in the case of organ pipes. The sound forms patterns called modes, as shown in the diagram. Many other monuments have been shown[6] to exhibit whispering-gallery waves, such as the Gol Gumbaz in Bijapur and the Temple of Heaven in Beijing.
In the strict definition of whispering-gallery waves, they cannot exist when the guiding surface becomes straight.[7] Mathematically this corresponds to the limit of an infinite radius of curvature. Whispering-gallery waves are guided by the effect of the wall curvature.
Acoustic waves
Whispering-gallery waves for sound exist in a wide variety of systems. Examples include the vibrations of the whole Earth[8] or stars.[9] Such acoustic whispering-gallery waves can be used in nondestructive testing in the form of waves that creep around holes filled with liquid,[10] for example. They have also been detected in solid cylinders[11] and spheres,[12] with applications in sensing, and visualized in motion on microscopic discs .[13]
Whispering gallery waves are more efficiently guided in spheres than in cylinders because the effects of acoustic diffraction (lateral wave spreading) are then completely compensated.[14]
Electromagnetic waves
Whispering-gallery waves exist for light waves.[15] [16] [17] They have been produced in microscopic glass spheres or tori,[18] [19] for example, with applications in lasing,[20] optomechanical cooling,[21] frequency comb generation[22] and optical sensing.[23] The light waves are almost perfectly guided round by total internal reflection, leading to Q factors in excess of 1010 being achieved.[24] This is far greater than the best values, about 104, that can be similarly obtained in acoustics.[25] Optical modes in a whispering gallery resonator are inherently lossy due to a mechanism similar to quantum tunneling. As a result, light inside a whispering gallery mode experiences a degree of radiation loss even in theoretically ideal conditions. Such a loss channel has been known from research on optical waveguide theory and is dubbed tunneling ray attenuation[26] in the field of fiber optics. The Q factor is proportional to the decay time of the waves, which in turn is inversely proportional to both the surface scattering rate and the wave absorption in the medium making up the gallery. Whispering-gallery waves for light have been investigated in chaotic galleries,[27] [28] whose cross-sections deviate from a circle. And such waves have been used in quantum information applications.[29]
Whispering-gallery waves have also been demonstrated for other electromagnetic waves such as radio waves,[30] microwaves,[31] terahertz radiation,[32] infrared radiation,[33] ultraviolet waves[34] and x-rays.[35] More recently, with the rapid development of microfluidic technologies, many integrated whispering gallery mode sensors, by combining the portability of lab‐on‐chip devices and the high sensitivity of whispering gallery mode resonators have emerged.[36] [37] The capabilities of efficient sample handling and multiplexed analyte detection offered by these systems have led to many biological and chemical sensing applications, especially for the detection of single particle or biomolecule.[38] [39]
Other systems
Whispering-gallery waves have been seen in the form of matter waves for neutrons,[40] and electrons,[41] and they have been proposed as an explanation for vibrations of a single nucleus.[42] Whispering gallery waves have also been observed in the vibrations of soap films as well as in the vibrations of thin plates [43] Analogies of whispering-gallery waves also exist for gravitational waves at the event horizon of black holes. A hybrid of waves of light and electrons known as surface plasmons has been demonstrated in the form of whispering-gallery waves,[44] and likewise for exciton-polaritons in semiconductors.[45] Galleries simultaneously containing both acoustic and optical whispering-gallery waves have also been made,[46] exhibiting very strong mode coupling and coherent effects.[47] Hybrid solid-fluid-optical whispering-gallery structures have been observed as well.[48]
See also
External links
Notes and References
- Lord Rayleigh, Theory of Sound, vol. II, 1st edition, (London, MacMillan), 1878.
- J. Tyndall, The Science of Sound (New York, Philosophical Library), 1867, p. 20.
- G. B. Airy, On Sound and Atmospheric Vibrations, with the Mathematical Elements of Music (London, MacMillan), 1871, p. 145.
- Rayleigh . Lord . John William Strutt, 3rd Baron Rayleigh. CXII. The problem of the whispering gallery . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science . Informa UK Limited . 20 . 120 . 1910 . 1941-5982 . 10.1080/14786441008636993 . 1001–1004.
- Rayleigh . Lord . John William Strutt, 3rd Baron Rayleigh. IX. Further applications of Bessel's functions of high order to the Whispering Gallery and allied problems . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science . Informa UK Limited . 27 . 157 . 1914 . 1941-5982 . 10.1080/14786440108635067 . 100–109.
- C. V. . Raman. C. V. Raman. Proceedings of the Indian Association for the Cultivation of Science. 7. 159. 1921–1922. XV. On Whispering Galleries.
- L. M. Brekhovskikh, Sov. Phys. Acoust. 13, 462, 1968
- Quantitative Seismology, K. Aki and P. G. Richards (University Science Books), 2009, Ch. 8
- Reese . D. R. . MacGregor . K. B. . Jackson . S. . Skumanich . A. . Metcalfe . T. S. . Pulsation modes in rapidly rotating stellar models based on the self-consistent field method . Astronomy & Astrophysics . EDP Sciences . 506 . 1 . 1 March 2009 . 0004-6361 . 10.1051/0004-6361/200811510 . 189–201. free. 2009A&A...506..189R . 0903.4854 .
- Nagy . Peter B. . Blodgett . Mark . Golis . Matthew . Weep hole inspection by circumferential creeping waves . NDT & E International . Elsevier BV . 27 . 3 . 1994 . 0963-8695 . 10.1016/0963-8695(94)90604-1 . 131–142.
- Clorennec . D . Royer . D . Walaszek . H . Nondestructive evaluation of cylindrical parts using laser ultrasonics . Ultrasonics . Elsevier BV . 40 . 1–8 . 2002 . 0041-624X . 10.1016/s0041-624x(02)00210-x . 12160045 . 783–789.
- Ishikawa . Satoru . Nakaso . Noritaka . Takeda . Nobuo . Mihara . Tsuyoshi . Tsukahara . Yusuke . Yamanaka . Kazushi . Surface acoustic waves on a sphere with divergent, focusing, and collimating beam shapes excited by an interdigital transducer . Applied Physics Letters . AIP Publishing . 83 . 22 . 2003 . 0003-6951 . 10.1063/1.1631061 . 4649–4651. 2003ApPhL..83.4649I .
- Tachizaki . Takehiro . Matsuda . Osamu . Maznev . Alex A. . Wright . Oliver B. . Acoustic whispering-gallery modes generated and dynamically imaged with ultrashort optical pulses . Physical Review B . American Physical Society (APS) . 81 . 16 . 23 April 2010 . 1098-0121 . 10.1103/physrevb.81.165434 . 165434. 2010PhRvB..81p5434T . 2115/43062 . free .
- Ishikawa . Satoru . Cho . Hideo . Yamanaka . Kazushi . Nakaso . Noritaka . Tsukahara . Yusuke . Surface Acoustic Waves on a Sphere –Analysis of Propagation Using Laser Ultrasonics– . Japanese Journal of Applied Physics . Japan Society of Applied Physics . 40 . Part 1, No. 5B . 30 May 2001 . 0021-4922 . 10.1143/jjap.40.3623 . 2001JaJAP..40.3623I . 3623–3627. 121857533 .
- Mie . Gustav . Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen . Annalen der Physik . Wiley . 330 . 3 . 1908 . 0003-3804 . 10.1002/andp.19083300302 . 377–445 . de. free. 1908AnP...330..377M .
- Debye . P. . Peter Debye. Der Lichtdruck auf Kugeln von beliebigem Material . Annalen der Physik . Wiley . 335 . 11 . 1909 . 0003-3804 . 10.1002/andp.19093351103 . 57–136 . de. 1909AnP...335...57D . 1908/3003 . free .
- Oraevsky . Anatolii N . Whispering-gallery waves . Quantum Electronics . IOP Publishing . 32 . 5 . 31 May 2002 . 1063-7818 . 10.1070/qe2002v032n05abeh002205 . 377–400. 250792191 .
- Vahala. K. J. . 2003 . Optical microcavities . Nature . 424. 6950 . 839–846 . 10.1038/nature01939. 12917698 . 2003Natur.424..839V. 4349700 .
- Chiasera . A. . Dumeige . Y. . Féron . P. . Ferrari . M. . Jestin . Y. . Nunzi Conti . G. . Pelli . S. . Soria . S. . Righini . G.C. . Spherical whispering-gallery-mode microresonators . Laser & Photonics Reviews . Wiley . 4 . 3 . 23 April 2010 . 1863-8880 . 10.1002/lpor.200910016 . 457–482. 2010LPRv....4..457C . 119484780 .
- Rakovich . Y.P. . Donegan . J.F. . Photonic atoms and molecules . Laser & Photonics Reviews . Wiley . 4 . 2 . 2 June 2009 . 1863-8880 . 10.1002/lpor.200910001 . 179–191. 121561846 .
- Kippenberg . T. J. . Vahala . K. J. . Cavity Optomechanics: Back-Action at the Mesoscale . Science . American Association for the Advancement of Science (AAAS) . 321 . 5893 . 29 August 2008 . 0036-8075 . 10.1126/science.1156032 . 18755966 . 1172–1176. 2008Sci...321.1172K . 4620490 .
- Pascal Del'Haye . Del’Haye . P. . Schliesser . A. . Arcizet . O. . Wilken . T. . Holzwarth . R. . Kippenberg . T. J. . Optical frequency comb generation from a monolithic microresonator . Nature . Springer Science and Business Media LLC . 450 . 7173 . 2007 . 0028-0836 . 10.1038/nature06401 . 18097405 . 1214–1217. 2007Natur.450.1214D . 0708.0611 . 4426096 .
- Arnold . S. . Khoshsima . M. . Teraoka . I. . Holler . S. . Vollmer . F. . Shift of whispering-gallery modes in microspheres by protein adsorption . Optics Letters . The Optical Society . 28 . 4 . 272–4 . 15 February 2003 . 0146-9592 . 10.1364/ol.28.000272 . 12653369 . 2003OptL...28..272A .
- Grudinin . Ivan S. . Ilchenko . Vladimir S. . Maleki . Lute . Ultrahigh optical Q factors of crystalline resonators in the linear regime . Physical Review A . American Physical Society (APS) . 74 . 6 . 8 December 2006 . 1050-2947 . 10.1103/physreva.74.063806 . 063806. 2006PhRvA..74f3806G .
- K. . Yamanaka . S.. Ishikawa. N.. Nakaso. N.. Takeda. Dong Youn. Sim. T.. Mihara. 5. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control . 53. 4. 2006. 10.1109/TUFFC.2006.1621507. Ultramultiple roundtrips of surface acoustic wave on sphere realizing innovation of gas sensors. 793–801 . 16615584 . 22051539 .
- Pask . Colin . Colin Pask . Generalized parameters for tunneling ray attenuation in optical fibers . Journal of the Optical Society of America . The Optical Society . 68 . 1 . 1 December 1977 . 0030-3941 . 10.1364/josa.68.000110 . 110.
- Gmachl . C. . High-Power Directional Emission from Microlasers with Chaotic Resonators . Science . 280 . 5369 . 5 June 1998 . 0036-8075 . 10.1126/science.280.5369.1556 . 9616111 . 1556–1564. 1998Sci...280.1556G . cond-mat/9806183 . 502055 .
- Baryshnikov . Yuliy . Heider . Pascal . Parz . Wolfgang . Zharnitsky . Vadim . Whispering Gallery Modes Inside Asymmetric Resonant Cavities . Physical Review Letters . American Physical Society (APS) . 93 . 13 . 22 September 2004 . 0031-9007 . 10.1103/physrevlett.93.133902 . 15524720 . 133902. 2004PhRvL..93m3902B .
- Tanaka . Akira . Asai . Takeshi . Toubaru . Kiyota . Takashima . Hideaki . Fujiwara . Masazumi . Okamoto . Ryo . Takeuchi . Shigeki . Phase shift spectra of a fiber–microsphere system at the single photon level . Optics Express . The Optical Society . 19 . 3 . 2278–85 . 24 January 2011 . 1094-4087 . 10.1364/oe.19.002278 . 21369045 . 2011OExpr..19.2278T . 1101.5198 . 31604481 .
- K. G.. Budden. H. G.. Martin. The ionosphere as a whispering gallery . Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences . The Royal Society . 265 . 1323 . 6 February 1962 . 2053-9169 . 10.1098/rspa.1962.0042 . 554–569. 1962RSPSA.265..554B. 120311101.
- Stanwix. P. L. . 2005 . Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators . Physical Review Letters. 95. 4 . 040404 . 10.1103/PhysRevLett.95.040404 . 16090785 . etal. hep-ph/0506074. 2005PhRvL..95d0404S. 14255475 .
- Mendis. R. . Mittleman. M. . 2010 . Whispering-gallery-mode terahertz pulse propagation on a curved metallic plate . Applied Physics Letters . 97. 3 . 031106 . 10.1063/1.3466909. 2010ApPhL..97c1106M.
- Albert . F. . Braun . T. . Heindel . T. . Schneider . C. . Reitzenstein . S. . Höfling . S. . Worschech . L. . Forchel . A. . Whispering gallery mode lasing in electrically driven quantum dot micropillars . Applied Physics Letters . AIP Publishing . 97 . 10 . 6 September 2010 . 0003-6951 . 10.1063/1.3488807 . 101108. 2010ApPhL..97j1108A .
- Hyun . J. K. . Couillard . M. . Rajendran . P. . Liddell . C. M. . Muller . D. A. . Measuring far-ultraviolet whispering gallery modes with high energy electrons . Applied Physics Letters . AIP Publishing . 93 . 24 . 15 December 2008 . 0003-6951 . 10.1063/1.3046731 . 243106. 2008ApPhL..93x3106H .
- Liu . Chien . Golovchenko . Jene A. . Surface Trapped X Rays: Whispering-Gallery Modes atλ=0.7Å . Physical Review Letters . American Physical Society (APS) . 79 . 5 . 4 August 1997 . 0031-9007 . 10.1103/physrevlett.79.788 . 788–791. 1997PhRvL..79..788L . 121253766 .
- M.R. Foreman. Whispering gallery mode sensors . Advances in Optics and Photonics. 7 . 168–240. 2015. 2 . 10.1364/AOP.7.000168. 26973759 . 4786191. 2015AdOP....7..168F .
- Y. Wang. Microfluidic whispering gallery mode optical sensors for biological applications . Laser & Photonics Reviews. 14 . 2000135–56. 2020. 12 . 10.1002/lpor.202000135. 2020LPRv...1400135W . 228850737 .
- T. Reynolds. Fluorescent and lasing whispering gallery mode microresonators for sensing applications . Laser & Photonics Reviews. 11 . 1600265–76. 2017. 2 . 10.1002/lpor.201600265. 2017LPRv...1100265R . 2027.42/136528. 125481589 . free.
- A. Bozzola. Hybrid plasmonic–photonic whispering gallery mode resonators for sensing: a critical review . Analyst. 142 . 883–898. 2017. 6 . 10.1039/C6AN02693A. 28225100 . 2017Ana...142..883B . free.
- Nesvizhevsky . Valery V. . Voronin . Alexei Yu. . Cubitt . Robert . Protasov . Konstantin V. . Neutron whispering gallery . Nature Physics . Springer Science and Business Media LLC . 6 . 2 . 13 December 2009 . 1745-2473 . 10.1038/nphys1478 . 114–117. free .
- Reecht . Gaël . Bulou . Hervé . Scheurer . Fabrice . Speisser . Virginie . Carrière . Bernard . Mathevet . Fabrice . Schull . Guillaume . Oligothiophene Nanorings as Electron Resonators for Whispering Gallery Modes . Physical Review Letters . American Physical Society (APS) . 110 . 5 . 29 January 2013 . 0031-9007 . 10.1103/physrevlett.110.056802 . 23414040 . 056802. 2013PhRvL.110e6802R . 1301.4860 . 40257448 .
- Dragún . Olga . Überall . Herbert . Nuclear Rayleigh and whispering gallery waves excited in heavy ion collisions . Physics Letters B . Elsevier BV . 94 . 1 . 1980 . 0370-2693 . 10.1016/0370-2693(80)90816-3 . 24–27. 1980PhLB...94...24D .
- Arcos . E. . Báez . G. . Cuatláyol . P. A. . Prian . M. L. H. . Méndez-Sánchez . R. A. . Hernández-Saldaña . H. . Vibrating soap films: An analog for quantum chaos on billiards . American Journal of Physics . American Association of Physics Teachers (AAPT) . 66 . 7 . 1998 . 0002-9505 . 10.1119/1.18913 . 601–607. 1998AmJPh..66..601A . chao-dyn/9903002 . 52106857 .
- Min . Bumki . Ostby . Eric . Sorger . Volker . Ulin-Avila . Erick . Yang . Lan . Zhang . Xiang . Vahala . Kerry . High-Q surface-plasmon-polariton whispering-gallery microcavity . Nature . Springer Science and Business Media LLC . 457 . 7228 . 2009 . 0028-0836 . 10.1038/nature07627 . 19158793 . 455–458. 2009Natur.457..455M . 4411541 .
- Sun . Liaoxin . Chen . Zhanghai . Ren . Qijun . Yu . Ke . Bai . Lihui . Zhou . Weihang . Xiong . Hui . Zhu . Z. Q. . Shen . Xuechu . Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity . Physical Review Letters . 100 . 15 . 16 April 2008 . 0031-9007 . 10.1103/physrevlett.100.156403 . 18518134 . 156403. 2008PhRvL.100o6403S . 0710.5334 . 28537857 .
- Tomes . Matthew . Carmon . Tal . Photonic Micro-Electromechanical Systems Vibrating atX-band (11-GHz) Rates . Physical Review Letters . American Physical Society (APS) . 102 . 11 . 19 March 2009 . 0031-9007 . 10.1103/physrevlett.102.113601 . 19392199 . 113601. 2009PhRvL.102k3601T .
- Kim . JunHwan . Kuzyk . Mark C. . Han . Kewen . Wang . Hailin . Bahl . Gaurav . Non-reciprocal Brillouin scattering induced transparency . Nature Physics . Springer Science and Business Media LLC . 11 . 3 . 26 January 2015 . 1745-2473 . 10.1038/nphys3236 . 275–280. 2015NatPh..11..275K . 1408.1739 . 119173646 .
- Bahl . Gaurav . Kim . Kyu Hyun . Lee . Wonsuk . Liu . Jing . Fan . Xudong . Carmon . Tal . Brillouin cavity optomechanics with microfluidic devices . Nature Communications . Springer Science and Business Media LLC . 4 . 1 . 1994 . 7 June 2013 . 2041-1723 . 10.1038/ncomms2994 . 23744103 . free. 2013NatCo...4.1994B . 1302.1949 .