Wave picking is used to support management and workers via a warehouse management system (WMS) in several ways, to support the planning and organizing of the daily flow of work of a warehouse or distribution center. Wave picking is an application of short-interval-scheduling. Managers, using a WMS, may assign groups of orders into short intervals called "waves", to initially simulate the flow for the day, consistent with the order departure plan and available labor. When the plan is satisfactory, it is accepted. The WMS will then release the waves to the warehouse sequentially throughout the day, to allow managers to coordinate the several parallel and sequential activities required to complete the daily work plan.[1] One of the objectives of wave picking is to minimize the variation of workload in each work function by wave.[2] The wave planning data includes the workload (order lines, cases, each items, value added services, etc.) by order or function (case picking, repack picking, pallet movement, pick position replenishment, packing, etc.), providing management the information to calculate staff requirements (Reasonable Expectancies or Productivity Standards) to guide the assignment of staff by function, with the reasonable expectation that the work in each function, within each wave. Waves are often constructed (based on each day's order characteristics and available staffing) to last between 1 and 4 hours, with resulting 8 to 2 waves in a shift.
There are three basic management tasks accomplished and benefits of wave picking.
Material handling methods and equipment are independent of waving. Each set of methods (e.g., order picking, batch picking, bulk picking) and equipment (e.g., conveyor and sorter, ASRS, order picker, pallet jack, forklift) will yield a different expected productivity rate for management to use in determining the number of staff-hours to assign to each function by wave.
Additional benefits of wave picking include the improved ability to