Water of crystallization explained

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

Upon crystallization from water, or water-containing solvents, many compounds incorporate water molecules in their crystalline frameworks. Water of crystallization can generally be removed by heating a sample but the crystalline properties are often lost.

Compared to inorganic salts, proteins crystallize with large amounts of water in the crystal lattice. A water content of 50% is not uncommon for proteins.

Applications

Knowledge of hydration is essential for calculating the masses for many compounds. The reactivity of many salt-like solids is sensitive to the presence of water.The hydration and dehydration of salts is central to the use of phase-change materials for energy storage.[1]

Position in the crystal structure

A salt with associated water of crystallization is known as a hydrate. The structure of hydrates can be quite elaborate, because of the existence of hydrogen bonds that define polymeric structures.[2] [3] Historically, the structures of many hydrates were unknown, and the dot in the formula of a hydrate was employed to specify the composition without indicating how the water is bound. Per IUPAC's recommendations, the middle dot is not surrounded by spaces when indicating a chemical adduct.[4] Examples:

For many salts, the exact bonding of the water is unimportant because the water molecules are made labile upon dissolution. For example, an aqueous solution prepared from and anhydrous behave identically. Therefore, knowledge of the degree of hydration is important only for determining the equivalent weight: one mole of weighs more than one mole of . In some cases, the degree of hydration can be critical to the resulting chemical properties. For example, anhydrous is not soluble in water and is relatively useless in organometallic chemistry whereas is versatile. Similarly, hydrated is a poor Lewis acid and thus inactive as a catalyst for Friedel-Crafts reactions. Samples of must therefore be protected from atmospheric moisture to preclude the formation of hydrates.

Crystals of hydrated copper(II) sulfate consist of centers linked to ions. Copper is surrounded by six oxygen atoms, provided by two different sulfate groups and four molecules of water. A fifth water resides elsewhere in the framework but does not bind directly to copper.[5] The cobalt chloride mentioned above occurs as and . In tin chloride, each Sn(II) center is pyramidal (mean angle is 83°) being bound to two chloride ions and one water. The second water in the formula unit is hydrogen-bonded to the chloride and to the coordinated water molecule. Water of crystallization is stabilized by electrostatic attractions, consequently hydrates are common for salts that contain +2 and +3 cations as well as −2 anions. In some cases, the majority of the weight of a compound arises from water. Glauber's salt,, is a white crystalline solid with greater than 50% water by weight.

Consider the case of nickel(II) chloride hexahydrate. This species has the formula . Crystallographic analysis reveals that the solid consists of subunits that are hydrogen bonded to each other as well as two additional molecules of . Thus one third of the water molecules in the crystal are not directly bonded to, and these might be termed "water of crystallization".

Analysis

The water content of most compounds can be determined with a knowledge of its formula. An unknown sample can be determined through thermogravimetric analysis (TGA) where the sample is heated strongly, and the accurate weight of a sample is plotted against the temperature. The amount of water driven off is then divided by the molar mass of water to obtain the number of molecules of water bound to the salt.

Other solvents of crystallization

Water is particularly common solvent to be found in crystals because it is small and polar. But all solvents can be found in some host crystals. Water is noteworthy because it is reactive, whereas other solvents such as benzene are considered to be chemically innocuous. Occasionally more than one solvent is found in a crystal, and often the stoichiometry is variable, reflected in the crystallographic concept of "partial occupancy". It is common and conventional for a chemist to "dry" a sample with a combination of vacuum and heat "to constant weight".

For other solvents of crystallization, analysis is conveniently accomplished by dissolving the sample in a deuterated solvent and analyzing the sample for solvent signals by NMR spectroscopy. Single crystal X-ray crystallography is often able to detect the presence of these solvents of crystallization as well. Other methods may be currently available.

Table of crystallization water in some inorganic halides

In the table below are indicated the number of molecules of water per metal in various salts.[6] [7]

Hydrated metal halides
and their formulas
Coordination sphere
of the metal
Equivalents of water of crystallization
that are not bound to M
Remarks
Calcium chloride
example of water as a bridging ligand[8]
Titanium(III) chloride
trans- twoisomorphous with
Titanium(III) chloride
3+ noneisomeric with .2H2O
Zirconium(IV) fluoride
nonerare case where Hf and Zr differpage=965">
Hafnium tetrafluoride
n(H2O)nonerare case where Hf and Zr differpage=965"/>
Vanadium(III) chloride
trans- two
Vanadium(III) bromide
trans-[9] two
Vanadium(III) iodide
nonerelative to and, competes poorly
with water as a ligand for V(III)
four
Chromium(III) chloride
trans- two dark green isomer, aka "Bjerrums's salt"
Chromium(III) chloride
one blue-green isomer
Chromium(II) chloride
trans- square planar/tetragonal distortion
Chromium(III) chloride
violet isomer. isostructural with aluminium compound[10]
Manganese(II) chloride
trans- two
Manganese(II) chloride
cis- cis molecular, the unstable trans isomer has also been detected[11]
Manganese(II) bromide
cis- cis, molecular
Manganese(II) iodide
trans- molecular, isostructural with FeCl2(H2O)4.[12]
Manganese(II) chloride
trans- polymeric with bridging chloride
Manganese(II) bromide
trans- polymeric with bridging bromide
Rhenium(III) chloride
triangulo- heavy early metals form M-M bonds[13]
Iron(II) chloride
trans- two
Iron(II) chloride
trans- molecular
Iron(II) bromide
trans- molecular, hydrates of FeI2 are not known
Iron(II) chloride
trans- polymeric with bridging chloride
Iron(III) chloride
trans- two one of four hydrates of ferric chloride,[14] isostructural with Cr analogue
Iron(III) chloride
cis- two the dihydrate has a similar structure, both contain anions.
Cobalt(II) chloride
trans- two
Cobalt(II) bromide
trans- two
Cobalt(II) iodide
[15] iodide competes poorly with water
Cobalt(II) bromide
trans- molecular
Cobalt(II) chloride
cis- note: cis molecular
Cobalt(II) chloride
trans- polymeric with bridging chloride
Cobalt(II) chloride
trans- polymeric with bridging bromide
Nickel(II) chloride
trans- two
Nickel(II) chloride
cis- note: cis molecular[16]
Nickel(II) bromide
trans- two
Nickel(II) iodide
iodide competes poorly with water
Nickel(II) chloride
trans- polymeric with bridging chloride
Platinum(IV) chloride
[17]
trans- octahedral Pt centers; rare example of non-first row chloride-aquo complex
Platinum(IV) chloride
[18]
fac- octahedral Pt centers; rare example of non-first row chloride-aquo complex
Copper(II) chloride
tetragonally distorted
two long Cu-Cl distances
Copper(II) bromide
two tetragonally distorted
two long Cu-Br distances
Zinc(II) chloride
ZnCl2(H2O)1.33[19]
coordination polymer with both tetrahedral and octahedral Zn centers
Zinc(II) chloride
ZnCl2(H2O)2.5[20]
tetrahedral and octahedral Zn centers
Zinc(II) chloride
tetrahedral and octahedral Zn centers
Zinc(II) chloride
ZnCl2(H2O)4.5
tetrahedral and octahedral Zn centers
Cadmium chloride
CdCl2·H2O[21]
none water of crystallization is rare for heavy metal halides
Cadmium chloride
CdCl2·2.5H2O[22]
CdCl5(H2O) & CdCl4(H2O)2
Cadmium chloride
CdCl2·4H2O[23]
octahedral
Cadmium bromide
CdBr2(H2O)4[24]
octahedral Cd centers
Aluminum trichloride
isostructural with the Cr(III) compound

Examples are rare for second and third row metals. No entries exist for Mo, W, Tc, Ru, Os, Rh, Ir, Pd, Hg, Au. AuCl3(H2O) has been invoked but its crystal structure has not been reported.

Hydrates of metal sulfates

Transition metal sulfates form a variety of hydrates, each of which crystallizes in only one form. The sulfate group often binds to the metal, especially for those salts with fewer than six aquo ligands. The heptahydrates, which are often the most common salts, crystallize as monoclinic and the less common orthorhombic forms. In the heptahydrates, one water is in the lattice and the other six are coordinated to the ferrous center.[25] Many of the metal sulfates occur in nature, being the result of weathering of mineral sulfides.[26] Many monohydrates are known.

Formula of
hydrated metal ion sulfate
Coordination
sphere of the metal ion
Equivalents of water of crystallization
that are not bound to M
mineral name Remarks
[Mn(μ-H<sub>2</sub>O)(μ<sub>4</sub>,-κ<sup>1</sup>-SO<sub>4</sub>)<sub>4</sub>][27] none kieserite see Mn, Fe, Co, Ni, Zn analogues
[Mg(H<sub>2</sub>O)<sub>4</sub>(κ′,κ<sup>1</sup>-SO<sub>4</sub>)]2 nonesulfate is bridging ligand, 8-membered Mg2O4S2 rings[28]
[Mg(H<sub>2</sub>O)<sub>6</sub>] nonehexahydrate common motif
[Mg(H<sub>2</sub>O)<sub>6</sub>] oneepsomite common motif
TiOSO4(H2O)[Ti(μ-O)<sub>2</sub>(H<sub>2</sub>O)(κ<sup>1</sup>-SO<sub>4</sub>)<sub>3</sub>]nonefurther hydration gives gels
VSO4(H2O)6[V(H<sub>2</sub>O)<sub>6</sub>] noneAdopts the hexahydrite motif[29]
VSO4(H2O)7[V(H<sub>2</sub>O)<sub>6</sub>] onehexaaquo[30]
VOSO4(H2O)5[VO(H<sub>2</sub>O)<sub>4</sub>(κ<sup>1</sup>-SO<sub>4</sub>)<sub>4</sub>]one
[Cr(H<sub>2</sub>O)<sub>3</sub>(κ<sup>1</sup>-SO<sub>4</sub>)] noneresembles Cu(SO4)(H2O)3[31]
[Cr(H<sub>2</sub>O)<sub>4</sub>(κ<sup>1</sup>-SO<sub>4</sub>)<sub>2</sub>] oneresembles Cu(SO4)(H2O)5[32]
[Cr(H<sub>2</sub>O)<sub>6</sub>] sixOne of several chromium(III) sulfates
[Mn(μ-H<sub>2</sub>O)(μ<sub>4</sub>,-κ<sup>1</sup>-SO<sub>4</sub>)<sub>4</sub>] none szmikite see Fe, Co, Ni, Zn analogues
[Mn(μ-SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>][33] none Ilesitepentahydrate is called jôkokuite; the hexahydrate, the most rare, is called chvaleticeite with 8-membered ring Mn2(SO4)2 core
? jôkokuite
? Chvaleticeite
[Mn(H<sub>2</sub>O)<sub>6</sub>] onemallarditesee Mg analogue
[Fe(μ-H<sub>2</sub>O)(μ<sub>4</sub>-κ<sup>1</sup>-SO<sub>4</sub>)<sub>4</sub>] none see Mn, Co, Ni, Zn analogues
[Fe(H<sub>2</sub>O)<sub>6</sub>] onemelanteritesee Mg analogue
[Fe(H<sub>2</sub>O)<sub>4</sub>(κ′,κ<sup>1</sup>-SO<sub>4</sub>)]2 nonesulfate is bridging ligand, 8-membered Fe2O4S2 rings
FeII(FeIII)2(SO4)4(H2O)14 [Fe<sup>II</sup>(H<sub>2</sub>O)<sub>6</sub>]2+[Fe<sup>III</sup>(H<sub>2</sub>O)<sub>4</sub>(κ<sup>1</sup>-SO<sub>4</sub>)<sub>2</sub>] nonesulfates are terminal ligands on Fe(III)[34]
[Co(μ-H<sub>2</sub>O)(μ<sub>4</sub>-κ<sup>1</sup>-SO<sub>4</sub>)<sub>4</sub>]none see Mn, Fe, Ni, Zn analogues
[Co(H<sub>2</sub>O)<sub>6</sub>] nonemoorhouseite see Mg analogue
[Co(H<sub>2</sub>O)<sub>6</sub>] onebieberitesee Fe, Mg analogues
[Ni(μ-H<sub>2</sub>O)(μ<sub>4</sub>-κ<sup>1</sup>-SO<sub>4</sub>)<sub>4</sub>] none see Mn, Fe, Co, Zn analogues
[Ni(H<sub>2</sub>O)<sub>6</sub>] noneretgersite One of several nickel sulfate hydrates[35]
[Ni(H<sub>2</sub>O)<sub>6</sub>] morenosite
(NH4)2[Pt<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>] [Pt<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]2- nonePt-Pt bonded Chinese lantern structure[36]
[Cu(H<sub>2</sub>O)<sub>4</sub>(κ<sup>1</sup>-SO<sub>4</sub>)<sub>2</sub>] onechalcantitesulfate is bridging ligand[37]
[Cu(H<sub>2</sub>O)<sub>6</sub>] oneboothite
[Zn(μ-H<sub>2</sub>O)(μ<sub>4</sub>-κ<sup>1</sup>-SO<sub>4</sub>)<sub>4</sub>]none see Mn, Fe, Co, Ni analogues
[Zn(H<sub>2</sub>O)<sub>4</sub>(κ′,κ<sup>1</sup>-SO<sub>4</sub>)]2 nonesulfate is bridging ligand, 8-membered Zn2O4S2 rings[38]
[Zn(H<sub>2</sub>O)<sub>6</sub>] nonesee Mg analogue[39]
[Zn(H<sub>2</sub>O)<sub>6</sub>] onegoslarite[40] see Mg analogue
CdSO4(H2O)[Cd(μ-H<sub>2</sub>O)<sub>2</sub>(κ<sup>1</sup>-SO<sub>4</sub>)<sub>4</sub>]none bridging water ligand[41]

Hydrates of metal nitrates

Transition metal nitrates form a variety of hydrates. The nitrate anion often binds to the metal, especially for those salts with fewer than six aquo ligands. Nitrates are uncommon in nature, so few minerals are represented here. Hydrated ferrous nitrate has not been characterized crystallographically.

Formula of
hydrated metal ion nitrate
Coordination
sphere of the metal ion
Equivalents of water of crystallization
that are not bound to M
Remarks
[Cr(H<sub>2</sub>O)<sub>6</sub>]3+ threeoctahedral configuration[42] isostructural with Fe(NO3)3(H2O)9
cis-[Mn(H<sub>2</sub>O)<sub>4</sub>(κ<sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] noneoctahedral configuration
[Mn(H<sub>2</sub>O)(μ-ONO<sub>2</sub>)<sub>5</sub>] none
[Mn(H<sub>2</sub>O)<sub>6</sub>] noneoctahedral configuration[43]
[Fe(H<sub>2</sub>O)<sub>6</sub>]3+ threeoctahedral configuration[44] isostructural with Cr(NO3)3(H2O)9
[Fe(H<sub>2</sub>O)<sub>3</sub>(κ<sup>2</sup>-O<sub>2</sub>NO)<sub>2</sub>]+ onepentagonal bipyramid[45]
[Fe(H<sub>2</sub>O)<sub>5</sub>(κ<sup>1</sup>-ONO<sub>2</sub>)]2+ noneoctahedral configuration
[Fe(H<sub>2</sub>O)<sub>6</sub>]3+ noneoctahedral configuration
[Co(H<sub>2</sub>O)<sub>2</sub>(κ<sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] noneoctahedral configuration
[Co(H<sub>2</sub>O)<sub>4</sub>(κ<sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub> || style="text-align:center;" |none|| [[octahedral molecular geometry|octahedral configuration]]|-| Co(NO3)2(H2O)6 || [Co(H<sub>2</sub>O)<sub>6</sub>]2+ || style="text-align:center;" |none|| octahedral configuration.[46] |-| α-Ni(NO3)2(H2O)4 || cis-[Ni(H<sub>2</sub>O)<sub>4</sub>(κ<sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] || style="text-align:center;" |none|| octahedral configuration.[47] |-| β-Ni(NO3)2(H2O)4 || trans-[Ni(H<sub>2</sub>O)<sub>4</sub>(κ<sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] || style="text-align:center;" |none|| octahedral configuration.[48] |-|Pd(NO3)2(H2O)2 || trans-[Pd(H<sub>2</sub>O)<sub>2</sub>(κ<sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] || style="text-align:center;" |none||square planar coordination geometry[49] |-| Cu(NO3)2(H2O) || [Cu(H<sub>2</sub>O)(κ<sup>2</sup>-ONO<sub>2</sub>)<sub>2</sub>] || style="text-align:center;" |none|| octahedral configuration.|-| Cu(NO3)2(H2O)1.5 || uncertain || style="text-align:center;" |uncertain|| uncertain[50] |-| Cu(NO3)2(H2O)2.5 || [Cu(H<sub>2</sub>O)<sub>2</sub>(κ<sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] || style="text-align:center;" |one|| square planar[51] |-| Cu(NO3)2(H2O)3 || uncertain || style="text-align:center;" | uncertain || uncertain [52] |-| Cu(NO3)2(H2O)6 || [Cu(H<sub>2</sub>O)<sub>6</sub>]2+ || style="text-align:center;" |none|| octahedral configuration[53] |-| Zn(NO3)2(H2O)4 || cis-[Zn(H<sub>2</sub>O)<sub>4</sub>(κ<sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] || style="text-align:center;" |none|| octahedral configuration.|-| ||[H<sub>2</sub>O–Hg–Hg–OH<sub>2</sub>]2+||linear[54] |-

|}

See also

References

Notes and References

  1. 10.1016/j.rser.2007.10.005. Review on thermal energy storage with phase change materials and applications. 2009. Sharma. Atul. Tyagi. V.V.. Chen. C.R.. Buddhi. D.. Renewable and Sustainable Energy Reviews. 13. 2. 318–345.
  2. Novel Hydrogen-Bonded Three-Dimensional Networks Encapsulating One-Dimensional Covalent Chains: [M(4,4′-bipy)(H<sub>2</sub>O)<sub>4</sub>](4-abs)2·nH2O (4,4′-bipy = 4,4′-Bipyridine; 4-abs = 4-Aminobenzenesulfonate) (M = Co, n = 1; M = Mn, n = 2) ]. 10.1021/ic025915o . 2002 . Wang . Yonghui . Feng . Liyun . Li . Yangguang . Hu . Changwen . Wang . Enbo . Hu . Ninghai . Jia . Hengqing . Inorganic Chemistry . 41 . 24 . 6351–6357 . 12444778 .
  3. 10.1016/j.inoche.2009.12.033 . Formation of 2D water morphologies in the lattice of the salt with [Cu<sub>2</sub>(OH)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(phen)<sub>2</sub>]2+ as cation and 4,6-dimethyl-1,2,3-triazolo[4,5-d]pyrimidin-5,7-dionato as anion . 2010 . Maldonado . Carmen R. . Quirós . Miguel . Salas . J.M. . Inorganic Chemistry Communications . 13 . 3 . 399–403 .
  4. Book: Connelly. Neil G.. Damhus. Ture. Hartshorn. Richard M.. Hutton. Alan T. . Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 (the "Red Book") . 2005 . 0-85404-438-8 . 56 . 10 January 2023.
  5. Book: Moeller. Therald. Chemistry: With Inorganic qualitative Analysis. Jan 1, 1980. Academic Press Inc (London) Ltd. 978-0-12-503350-3. 909. 15 June 2014.
  6. K. Waizumi . H. Masuda . H. Ohtaki . X-Ray Structural Studies of FeBr2·4H2O, CoBr2·4H2O, NiCl2·4H2O, and CuBr2·4H2O. cis/trans Selectivity in Transition Metal(II) Dihalide Tetrahydrate. Inorganica Chimica Acta. 1992. 192. 2 . 173–181. 10.1016/S0020-1693(00)80756-2 .
  7. B. Morosin. An X-ray Diffraction Study on Nickel(II) Chloride Dihydrate. Acta Crystallographica . 1967. 23. 4 . 630–634. 10.1107/S0365110X67003305.
  8. Agron. P. A.. Busing. W. R.. Calcium and Strontium Dichloride Hexahydrates by Neutron Diffraction. Acta Crystallographica Section C. 1986. 42. 2. 14. 10.1107/S0108270186097007. 97718377 .
  9. 10.1039/DT9750000894. Crystal and Molecular Structures of Aquahalogenovanadium(III) Complexes. Part I. X-Ray Crystal Structure of trans-Tetrakisaquadibromo-Vanadium(III) Bromide Dihydrate and the Isomorphous Chloro- Compound. 1975. Donovan. William F.. Smith. Peter W.. Journal of the Chemical Society, Dalton Transactions. 10. 894.
  10. Andress. K. R.. Carpenter. C.. Die Struktur von Chromchlorid- und Aluminiumchloridhexahydrat. Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie. 1934. 87. 446–463.
  11. Crystal Structure of Manganese Dichloride Tetrahydrate. Zalkin, Allan. Forrester, J. D.. Templeton, David H.. Inorganic Chemistry. 1964. 3. 4. 529–533. 10.1021/ic50014a017.
  12. 10.1107/S0108270185007466. Structure of Manganese(II) Iodide Tetrahydrate, MnI2·4H2O. 1985. Moore. J. E.. Abola. J. E.. Butera. R. A.. Acta Crystallographica Section C . 41. 9. 1284–1286.
  13. 10.1002/zaac.19875520908 . Rhenium trichloride, ReCl3, and its 5/3-hydrate synthesis, crystal structure, and thermal expansion . 1987 . Irmler . Manfred . Meyer . Gerd . Zeitschrift für Anorganische und Allgemeine Chemie . 552 . 9 . 81–89 .
  14. Simon A. Cotton. 2018. Iron(III) Chloride and Its Coordination Chemistry . Journal of Coordination Chemistry. 71. 21. 3415–3443. 10.1080/00958972.2018.1519188. 105925459.
  15. Structure Cristalline et Expansion Thermique de l'Iodure de Nickel Hexahydrate" (Crystal structure and thermal expansion of nickel(II) iodide hexahydrate). Louër. Michele. Grandjean. Daniel. Weigel. Dominique. Journal of Solid State Chemistry. 1973. 7. 222–228. 10.1016/0022-4596(73)90157-6.
  16. 10.1016/S0020-1693(00)80756-2. X-ray Structural Studies of FeBr2·4H2O, CoBr2·4H2O, NiCl2·4H2O and CuBr2·4H2O. cis/trans Selectivity in Transition Metal(II) Dihalide Tetrahydrate . 1992 . Waizumi . Kenji . Masuda . Hideki . Ohtaki . Hitoshi . Inorganica Chimica Acta . 192 . 2 . 173–181 .
  17. 10.1524/zkri.1995.210.8.606. Crystal Structure of trans-Diaquatetrachloroplatinum(IV) trihydrate, Pt(H2O)2Cl4(H2O)3 . Zeitschrift für Kristallographie - Crystalline Materials . 1995 . 210 . 8 . 606 . 1995ZK....210..606R . Rau . F. . Klement . U. . Range . K. -J. .
  18. 10.1524/zkri.1995.210.8.605. Crystal Structure of fac-Triaquatrichloroplatinum(IV) Chloride Hemihydrate, (Pt(H2O)3Cl3)Cl(H2O)0.5 . Zeitschrift für Kristallographie - Crystalline Materials . 1995 . 210 . 8 . 605 . 1995ZK....210..605R . Rau . F. . Klement . U. . Range . K. -J. .
  19. 10.1107/S0567740870004715. Die Kristallstruktur des ZnCl2.11/3HO. 1970. Follner. H.. Brehler. B.. Acta Crystallographica Section B . 26. 11. 1679–1682.
  20. 10.1107/S1600536814024738. Crystal Structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O. 2014. Hennings. Erik. Schmidt. Horst. Voigt. Wolfgang. Acta Crystallographica Section E. 70. 12. 515–518. 25552980. 4257420.
  21. H. Leligny . J. C. Monier . Structure Cristalline de CdCl2.H2O . Acta Crystallographica B . 1974 . 30 . 2. 305–309 . 10.1107/S056774087400272X . Crystal structure of CdCl2.H2O . fr.
  22. 10.1107/S056774087500369X . Structure de CdCl2.2,5H2O . 1975 . Leligny . H. . Mornier . J. C. . Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry . 31 . 3 . 728–732 . 1975AcCrB..31..728L .
  23. H. Leligny . J. C. Monier . Structure de dichlorure de cadmium tétrahydraté. Acta Crystallographica B . 1979 . 35 . 3. 569–573 . 10.1107/S0567740879004179 . Structure of Cadmium Dichloride Tetrahydrate. fr.
  24. 10.1107/S0567740878002186 . Structure Cristalline de CdBr2.4H2O . 1978 . Leligny . H. . Monier . J. C. . Acta Crystallographica Section B . 34 . 1 . 5–8 . 1978AcCrB..34....5L .
  25. Baur . W. H. . On the crystal chemistry of salt hydrates. III. The determination of the crystal structure of FeSO4(H2O)7 (melanterite) . Acta Crystallographica . 1964 . 17 . 9 . 1167–1174 . 10.1107/S0365110X64003000. free .
  26. 10.1016/j.jseaes.2012.11.027. The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences. 2013. Chou. I-Ming. Seal. Robert R.. Wang. Alian. Journal of Asian Earth Sciences. 62. 734–758. 2013JAESc..62..734C.
  27. Neues Jahrbuch für Mineralogie - Monatshefte. 1991. Wildner, M.; Giester, G.. 296–306. The Crystal Structures of Kieserite-type Compounds. I. Crystal Structures of Me(II)SO4·H2O (Me = Mn, Fe, Co, Ni, Zn) (English translation).
  28. 10.1107/S1600536802002192. Zinc(II) Sulfate Tetrahydrate and Magnesium Sulfate Tetrahydrate. Addendum. 2002. Baur. Werner H.. Acta Crystallographica Section E. 58. 4. e9–e10. free.
  29. 10.1021/ic00239a021. Synthesis and Characterization of Four Vanadium(II) Compounds, Including Vanadium(II) Sulfate Hexahydrate and Vanadium(II) Saccharinates. 1986. Cotton. F. Albert. Falvello. Larry R.. Llusar. Rosa. Libby. Eduardo. Murillo. Carlos A.. Schwotzer. Willi. Inorganic Chemistry. 25. 19. 3423–3428.
  30. 10.1021/ic00102a009 . Neutron and X-ray Structural Characterization of the Hexaaquavanadium(II) Compound VSO4.cntdot.7H2O . 1994 . Cotton . F. Albert . Falvello . Larry R. . Murillo . Carlos A. . Pascual . Isabel . Schultz . Arthur J. . Tomas . Milagros . Inorganic Chemistry . 33 . 24 . 5391–5395 .
  31. Dahmen, T. . Glaum, R. . Schmidt, G. . Gruehn, R. . Zur Darstellung und Kristallstruktur von CrSO4·3H2O. Preparation and Crystal Structure of Chromium(2+) Sulfate Trihydrate. Zeitschrift für Anorganische und Allgemeine Chemie. 1990. 586. 141–8. 10.1002/zaac.19905860119.
  32. T. P. Vaalsta. E. N. Maslen. Acta Crystallogr.. 1987. B43. 448–454. 10.1107/S0108768187097519. Electron density in chromium sulfate pentahydrate.
  33. 10.1107/S1600536802020962. Manganese(II) Sulfate Tetrahydrate (Ilesite) . 2002 . Held . Peter . Bohatý . Ladislav . Acta Crystallographica Section E . 58 . 12 . i121–i123 . 62599961 . free .
  34. The Crystal Structure of Roemerite . L. Fanfani . A. Nunzi . P. F. Zanazzi . American Mineralogist. 1970. 55. 78–89.
  35. 10.1107/S0108768187097787 . Structure, absolute configuration and optical activity of α-nickel sulfate hexahydrate . 1987 . Stadnicka . K. . Glazer . A. M. . Koralewski . M. . Acta Crystallographica Section B . 43 . 4 . 319–325 .
  36. 10.1002/ejic.200400755. Monomers, Chains and Layers of [Pt<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>] Units in the Crystal Structures of the Platinum(III) Sulfates (NH4)2[Pt<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>], K4[Pt<sub>2</sub>(SO<sub>4</sub>)<sub>5</sub>] and Cs[Pt<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>(HSO<sub>4</sub>)]. 2005. Pley. Martin. Wickleder. Mathias S.. European Journal of Inorganic Chemistry. 2005. 3. 529–535. free.
  37. V. P. Ting, P. F. Henry, M. Schmidtmann, C. C. Wilson, M. T. Weller "In situ Neutron Powder Diffraction and Structure Determination in Controlled Humidities" Chem. Commun., 2009, 7527-7529.
  38. 10.1107/S1600536801017998. Zinc(II) sulfate tetrahydrate. 2001. Blake. Alexander J.. Cooke. Paul A.. Hubberstey. Peter. Sampson. Claire L.. Acta Crystallographica Section E. 57. 12. i109–i111.
  39. 10.1002/zaac.19794560124. Beiträge zum thermischen Verhalten von Sulfaten. II. Zur thermischen Dehydratisierung des ZnSO4·7H2O und zum Hochtemperaturverhalten von wasserfreiem ZnSO4. 1979. Spiess. M.. Gruehn. R.. Zeitschrift für anorganische und allgemeine Chemie. 456. 222–240.
  40. 10.2138/am.2007.2229. Co2+–Cu2+ Substitution in Bieberite Solid-Solution Series, (Co1−xCuxSO4·7H2O, 0.00 ≤ x ≤ 0.46: Synthesis, Single-Crystal Structure Analysis, and Optical Spectroscopy. 2007. Redhammer. G. J.. Koll. L.. Bernroider. M.. Tippelt. G.. Amthauer. G.. Roth. G.. American Mineralogist. 92. 4. 532–545. 2007AmMin..92..532R. 95885758.
  41. Theppitak, Chatphorn; Chainok, Kittipong. Crystal Structure of CdSO4(H2O): A Redetermination. Acta Crystallographica Section E . 2015. 71. 10. i8–i9. 10.1107/S2056989015016904. 26594423. 4647421. free.
  42. 10.1107/S0108270190012628. Structure of Hexaaquachromium(III) Nitrate Trihydrate. 1991. Lazar. D.. Ribár. B.. Divjaković. V.. Mészáros. Cs.. Acta Crystallographica Section C . 47. 5. 1060–1062.
  43. 10.1524/zkri.1976.144.16.334. The crystal structure of hexaquomanganese nitrate, Mn(OH2)6(NO3)2. 1976. Petrovič. D.. Ribár. B.. Djurič. S.. Krstanovič. I.. Zeitschrift für Kristallographie - Crystalline Materials. 144. 1–6. 334–340. 97491858.
  44. 10.1021/ic50168a006. Structure of Hexaaquairon(III) Nitrate Trihydrate. Comparison of Iron(II) and Iron(III) Bond Lengths in High-Spin Octahedral Environments. 1977. Hair. Neil J.. Beattie. James K.. Inorganic Chemistry. 16. 2. 245–250.
  45. H. . Schmidt . A. . Asztalos . F. . Bok . W. . Voigt . 2012 . New iron(III) nitrate hydrates: Fe(NO3)3·xH2O with x = 4, 5 and 6 . Acta Crystallographica Section C . C68 . 6 . i29-33 . 10.1107/S0108270112015855. 22669180 .
  46. Cryst. Struct. Commun. . P. V. . Prelesnik . F. . Gabela . B. . Ribar . I. . Krstanovic . 2 . 4 . 1973. 581–583 . Hexaaquacobalt(II) nitrate.
  47. 10.1107/S0365110X67001392. Structure du Nitrate de Nickel Tétrahydraté. 1967. Gallezot. P.. Weigel. D.. Prettre. M.. Acta Crystallographica. 22. 5. 699–705. free.
  48. 10.1107/S0567740879010827. Crystal Structure of the β Form of Ni(NO3)2·4H2O. 1979. Morosin. B.. Haseda. T.. Acta Crystallographica Section B . 35. 12. 2856–2858.
  49. 10.1016/0025-5408(91)90021-D. Crystal Structure of Pd(NO3)2(H2O)2. 1991. Laligant. Y.. Ferey. G.. Le Bail. A.. Materials Research Bulletin. 26. 4. 269–275.
  50. Dornberger-Schiff . K. . Leciejewicz . J. . 1958 . Zur Struktur des Kupfernitrates Cu(NO3)2·1.5H2O . Acta Crystallographica . 11 . 11 . 825–826 . 10.1107/S0365110X58002322 . free .
  51. Morosin . B. . 1970 . The Crystal Structure of Cu(NO3)2·2.5H2O . Acta Crystallographica . B26 . 9 . 1203–1208 . 10.1107/S0567740870003898 .
  52. J. Garaj, Sbornik Prac. Chem.-Technol. Fak. Svst., Cskosl. 1966, pp. 35–39.
  53. Zibaseresht . R. . Hartshorn . R. M. . 2006 . Hexaaquacopper(II) dinitrate: absence of Jahn-Teller distortion . Acta Crystallographica . E62 . i19–i22 . 10.1107/S1600536805041851 .
  54. Journal of the Chemical Society. The Crystal Structure of Mercurous Nitrate Dihydrate. D. Grdenić. 10.1039/jr9560001312. 1956. 1312.