Venom Explained

Venom should not be confused with Poison.

Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action.[1] The toxin is delivered through a specially evolved venom apparatus, such as fangs or a stinger, in a process called envenomation.[2] Venom is often distinguished from poison, which is a toxin that is passively delivered by being ingested, inhaled, or absorbed through the skin,[3] and toxungen, which is actively transferred to the external surface of another animal via a physical delivery mechanism.[4]

Venom has evolved in terrestrial and marine environments and in a wide variety of animals: both predators and prey, and both vertebrates and invertebrates. Venoms kill through the action of at least four major classes of toxin, namely necrotoxins and cytotoxins, which kill cells; neurotoxins, which affect nervous systems; myotoxins, which damage muscles; and haemotoxins, which disrupt blood clotting. Venomous animals cause tens of thousands of human deaths per year.

Venoms are often complex mixtures of toxins of differing types. Toxins from venom are used to treat a wide range of medical conditions including thrombosis, arthritis, and some cancers. Studies in venomics are investigating the potential use of venom toxins for many other conditions.

Evolution

The use of venom across a wide variety of taxa is an example of convergent evolution. It is difficult to conclude exactly how this trait came to be so intensely widespread and diversified. The multigene families that encode the toxins of venomous animals are actively selected, creating more diverse toxins with specific functions. Venoms adapt to their environment and victims, evolving to become maximally efficient on a predator's particular prey (particularly the precise ion channels within the prey). Consequently, venoms become specialized to an animal's standard diet.[5]

Mechanisms

See main article: Toxin.

Venoms cause their biological effects via the many toxins that they contain; some venoms are complex mixtures of toxins of differing types. Major classes of toxin in venoms include:[6]

Taxonomic range

Venom is widely distributed taxonomically, being found in both invertebrates and vertebrates, in aquatic and terrestrial animals, and among both predators and prey. The major groups of venomous animals are described below.

Arthropods

Venomous arthropods include spiders, which use fangs on their chelicerae to inject venom, and centipedes, which use modified to deliver venom, while scorpions and stinging insects inject venom with a sting. In bees and wasps, the stinger is a modified ovipositor (egg-laying device). In Polistes fuscatus, the female continuously releases a venom that contains a sex pheromone that induces copulatory behavior in males.[15] In wasps such as Polistes exclamans, venom is used as an alarm pheromone, coordinating a response from the nest and attracting nearby wasps to attack the predator.[16] In some species, such as Parischnogaster striatula, venom is applied all over the body as an antimicrobial protection.[17]

Many caterpillars have defensive venom glands associated with specialized bristles on the body called urticating hairs. These are usually merely irritating, but those of the Lonomia moth can be fatal to humans.[18]

Bees synthesize and employ an acidic venom (apitoxin) to defend their hives and food stores, whereas wasps use a chemically different venom to paralyse prey, so their prey remains alive to provision the food chambers of their young. The use of venom is much more widespread than just these examples; many other insects, such as true bugs and many ants, also produce venom.[19] The ant species Polyrhachis dives uses venom topically for the sterilisation of pathogens.[20]

Other invertebrates

There are venomous invertebrates in several phyla, including jellyfish such as the dangerous box jellyfish,[21] the Portuguese man-of-war (a siphonophore) and sea anemones among the Cnidaria,[22] sea urchins among the Echinodermata,[23] and cone snails[24] and cephalopods, including octopuses, among the Molluscs.[25]

Vertebrates

Fish

See main article: Venomous fish.

Venom is found in some 200 cartilaginous fishes, including stingrays, sharks, and chimaeras; the catfishes (about 1000 venomous species); and 11 clades of spiny-rayed fishes (Acanthomorpha), containing the scorpionfishes (over 300 species), stonefishes (over 80 species), gurnard perches, blennies, rabbitfishes, surgeonfishes, some velvetfishes, some toadfishes, coral crouchers, red velvetfishes, scats, rockfishes, deepwater scorpionfishes, waspfishes, weevers, and stargazers.[26]

Amphibians

Some salamanders can extrude sharp venom-tipped ribs.[27] [28] Two frog species in Brazil have tiny spines around the crown of their skulls which, on impact, deliver venom into their targets.[29]

Reptiles

See main article: Snake venom and Evolution of snake venom.

Some 450 species of snake are venomous.[26] Snake venom is produced by glands below the eye (the mandibular glands) and delivered to the target through tubular or channeled fangs. Snake venoms contain a variety of peptide toxins, including proteases, which hydrolyze protein peptide bonds; nucleases, which hydrolyze the phosphodiester bonds of DNA; and neurotoxins, which disrupt signalling in the nervous system.[30] Snake venom causes symptoms including pain, swelling, tissue necrosis, low blood pressure, convulsions, haemorrhage (varying by species of snake), respiratory paralysis, kidney failure, coma, and death.[31] Snake venom may have originated with duplication of genes that had been expressed in the salivary glands of ancestors.[32] [33]

Venom is found in a few other reptiles such as the Mexican beaded lizard,[34] the gila monster, and some monitor lizards, including the Komodo dragon.[35] Mass spectrometry showed that the mixture of proteins present in their venom is as complex as the mixture of proteins found in snake venom.[35] [36] Some lizards possess a venom gland; they form a hypothetical clade, Toxicofera, containing the suborders Serpentes and Iguania and the families Varanidae, Anguidae, and Helodermatidae.[37]

Mammals

See main article: Venomous mammal.

Euchambersia, an extinct genus of therocephalians, is hypothesized to have had venom glands attached to its canine teeth.[38]

A few species of living mammals are venomous, including solenodons, shrews, vampire bats, male platypuses, and slow lorises.[26] [39] Shrews have venomous saliva and most likely evolved their trait similarly to snakes.[40] The presence of tarsal spurs akin to those of the platypus in many non-therian Mammaliaformes groups suggests that venom was an ancestral characteristic among mammals.[41]

Extensive research on platypuses shows that their toxin was initially formed from gene duplication, but data provides evidence that the further evolution of platypus venom does not rely as much on gene duplication as was once thought.[42] Modified sweat glands are what evolved into platypus venom glands. Although it is proven that reptile and platypus venom have independently evolved, it is thought that there are certain protein structures that are favored to evolve into toxic molecules. This provides more evidence of why venom has become a homoplastic trait and why very different animals have convergently evolved.

Venom and humans

Envenomation resulted in 57,000 human deaths in 2013, down from 76,000 deaths in 1990.[43] Venoms, found in over 173,000 species, have potential to treat a wide range of diseases, explored in over 5,000 scientific papers.[44]

In medicine, snake venom proteins are used to treat conditions including thrombosis, arthritis, and some cancers.[45] [46] Gila monster venom contains exenatide, used to treat type 2 diabetes.[44] Solenopsins extracted from fire ant venom has demonstrated biomedical applications, ranging from cancer treatment to psoriasis.[47] [48] A branch of science, venomics, has been established to study the proteins associated with venom and how individual components of venom can be used for pharmaceutical means.[49]

Resistance

Venom is used as a trophic weapon by many predator species. The coevolution between predators and prey is the driving force of venom resistance, which has evolved multiple times throughout the animal kingdom.[50] The coevolution between venomous predators and venom-resistant prey has been described as a chemical arms race.[51] Predator/prey pairs are expected to coevolve over long periods of time.[52] As the predator capitalizes on susceptible individuals, the surviving individuals are limited to those able to evade predation.[53] Resistance typically increases over time as the predator becomes increasingly unable to subdue resistant prey.[54] The cost of developing venom resistance is high for both predator and prey.[55] The payoff for the cost of physiological resistance is an increased chance of survival for prey, but it allows predators to expand into underutilised trophic niches.[56]

The California ground squirrel has varying degrees of resistance to the venom of the Northern Pacific rattlesnake.[57] The resistance involves toxin scavenging and depends on the population. Where rattlesnake populations are denser, squirrel resistance is higher.[58] Rattlesnakes have responded locally by increasing the effectiveness of their venom.[59]

The kingsnakes of the Americas are constrictors that prey on many venomous snakes.[60] They have evolved resistance which does not vary with age or exposure.[54] They are immune to the venom of snakes in their immediate environment, like copperheads, cottonmouths, and North American rattlesnakes, but not to the venom of, for example, king cobras or black mambas.[61]

Among marine animals, eels are resistant to sea snake venoms, which contain complex mixtures of neurotoxins, myotoxins, and nephrotoxins, varying according to species.[62] [63] Eels are especially resistant to the venom of sea snakes that specialise in feeding on them, implying coevolution; non-prey fishes have little resistance to sea snake venom.[64]

Clownfish always live among the tentacles of venomous sea anemones (an obligatory symbiosis for the fish),[65] and are resistant to their venom.[66] [67] Only 10 known species of anemones are hosts to clownfish and only certain pairs of anemones and clownfish are compatible.[68] All sea anemones produce venoms delivered through discharging nematocysts and mucous secretions. The toxins are composed of peptides and proteins. They are used to acquire prey and to deter predators by causing pain, loss of muscular coordination, and tissue damage. Clownfish have a protective mucus that acts as a chemical camouflage or macromolecular mimicry preventing "not self" recognition by the sea anemone and nematocyst discharge.[69] [70] [71] Clownfish may acclimate their mucus to resemble that of a specific species of sea anemone.[71]

See also

Notes and References

  1. Chippaux. JP. Goyffon. M. [Venomous and poisonous animals--I. Overview].. Médecine Tropicale. 66. 3. 2006. 0025-682X. 16924809. 215–20. fr.
  2. Book: Gupta, Ramesh C.. Reproductive and developmental toxicology. 24 March 2017 . Saint Louis. 978-0-12-804240-3. 980850276. 963–972.
  3. Web site: Poison vs. Venom. Australian Academy of Science. 3 November 2017 . 17 April 2022.
  4. Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465. . PMID: 24102715.
  5. Kordiš . D. . Gubenšek . F. . 2000 . Adaptive evolution of animal toxin multigene families . Gene . 261 . 1 . 43–52 . 10.1016/s0378-1119(00)00490-x . 11164036 .
  6. Harris . J. B. . Animal poisons and the nervous system: what the neurologist needs to know . Journal of Neurology, Neurosurgery & Psychiatry . 75 . suppl_3 . September 2004 . 10.1136/jnnp.2004.045724 . 15316044 . 1765666 . iii40–iii46.
  7. Raffray . M. . G. M. . Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death? . Pharmacology & Therapeutics . 75 . 3 . 153–177 . 1997 . 9504137 . 10.1016/s0163-7258(97)00037-5 . Cohen.
  8. Dutertre . Sébastien . Lewis . Richard J. . Toxin insights into nicotinic acetylcholine receptors . Biochemical Pharmacology . 72 . 6 . 2006 . 10.1016/j.bcp.2006.03.027 . 16716265 . 661–670.
  9. Nicastro . G. . Franzoni, L.; de Chiara, C.; Mancin, A. C.; Giglio, J. R.; Spisni, A. . Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom . Eur. J. Biochem. . 270 . 9 . 1969–1979 . May 2003 . 12709056 . 10.1046/j.1432-1033.2003.03563.x . 20601072 . free .
  10. Griffin . P. R. . Aird . S. D. . A new small myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis) . FEBS Letters . 274 . 1 . 43–47 . 1990 . 2253781 . 10.1016/0014-5793(90)81325-I. 45019479 . free .
  11. Samejima . Y. . Aoki . Y. . Mebs . D. . Amino acid sequence of a myotoxin from venom of the eastern diamondback rattlesnake (Crotalus adamanteus) . Toxicon . 29 . 4 . 461–468 . 1991 . 1862521 . 10.1016/0041-0101(91)90020-r.
  12. Whittington . C. M. . Papenfuss . A. T. . Bansal . P. . Torres . A. M. . Wong . E. S. . Deakin . J. E. . Graves . T. . Alsop . A. . Schatzkamer . K. . Kremitzki . C. . Ponting . C. P. . Temple-Smith . P. . Warren . W. C.. Kuchel . P. W. . Belov . K. . 3 . Defensins and the convergent evolution of platypus and reptile venom genes . Genome Research . June 2008 . 18 . 6 . 986–094 . 18463304 . 10.1101/gr.7149808 . 2413166 .
  13. Sobral . Filipa . Sampaio . Andreia . Falcão . Soraia . Queiroz . Maria João R.P. . Calhelha . Ricardo C. . Vilas-Boas . Miguel . Ferreira . Isabel C. F. R. . 3 . Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal . Food and Chemical Toxicology . 94 . 2016 . 10.1016/j.fct.2016.06.008 . 27288930 . 172–177 . 10198/13492 . 21796492 .
  14. Peng . Xiaozhen . Dai . Zhipan . Lei . Qian . Liang . Long . Yan . Shuai . Wang . Xianchun . 3 . Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells . Experimental and Therapeutic Medicine . 13 . 6 . April 2017 . 10.3892/etm.2017.4391 . 28587399 . 5450530 . 3267–3274.
  15. Post Downing . Jeanne . 1983 . Venom: Source of a Sex Pheromone in the Social Wasp Polistes fuscatus (Hymenoptera: Vespidae) . Journal of Chemical Ecology . 9 . 2 . 259–266 . 10.1007/bf00988043 . 24407344 . 1983JCEco...9..259P . 32612635 .
  16. Post Downing . Jeanne . 1984 . Alarm response to venom by social wasps Polistes exclamans and P. fuscatus . Journal of Chemical Ecology . 10 . 10 . 1425–1433 . 10.1007/BF00990313 . 24318343 . 38398672 .
  17. From individual to collective immunity: The role of the venom as antimicrobial agent in the Stenogastrinae wasp societies . Baracchi . David . January 2012 . Journal of Insect Physiology . 10.1016/j.jinsphys.2011.11.007 . 22108024 . 58 . 1 . 188–193 . 2158/790328 . 206185438 . free .
  18. Pinto . Antônio F. M. . Berger . Markus . Reck . José . Terra . Renata M. S. . Guimarães . Jorge A. . Lonomia obliqua venom: In vivo effects and molecular aspects associated with the hemorrhagic syndrome . Toxicon . 56 . 7 . 15 December 2010 . 20114060 . 10.1016/j.toxicon.2010.01.013 . 1103–1112.
  19. Touchard . Axel . Aili . Samira . Fox . Eduardo . Escoubas . Pierre . Orivel . Jérôme . Nicholson . Graham . Dejean . Alain . 3 . 20 January 2016 . The Biochemical Toxin Arsenal from Ant Venoms . Toxins . 8 . 1 . 30 . 10.3390/toxins8010030 . 26805882 . 4728552 . 2072-6651 . free.
  20. Graystock . Peter . Hughes . William O. H. . Disease resistance in a weaver ant, Polyrhachis dives, and the role of antibiotic-producing glands . Behavioral Ecology and Sociobiology . 2011 . 10.1007/s00265-011-1242-y . 65 . 12 . 2319–2327. 23234351 .
  21. Frost . Emily . What's Behind That Jellyfish Sting? . Smithsonian . 30 September 2018 . 30 August 2013.
  22. Book: Bonamonte . Domenico . Angelini . Gianni . Aquatic Dermatology: Biotic, Chemical and Physical Agents . 2016 . Springer International . 978-3-319-40615-2 . 54–56.
  23. Gallagher . Scott A. . Echinoderm Envenomation . EMedicine . 12 October 2010 . 2017-08-02 .
  24. Olivera . B. M. . Teichert . R. W. . Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery . Molecular Interventions . 2007 . 7 . 5 . 251–260 . 17932414 . 10.1124/mi.7.5.7.
  25. Barry . Carolyn . All Octopuses Are Venomous, Study Says . https://web.archive.org/web/20180930193124/https://www.nationalgeographic.com/animals/2009/04/octopus-venom-hunting-cephalopod/ . dead . 30 September 2018 . . 30 September 2018 . 17 April 2009.
  26. Smith . William Leo . Wheeler . Ward C. . Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms . Journal of Heredity . 97 . 3 . 2006 . 10.1093/jhered/esj034 . 16740627 . 206–217 . free .
  27. http://www.askabiologist.org.uk/punbb/viewtopic.php?id=1494 Venomous Amphibians (Page 1) – Reptiles (Including Dinosaurs) and Amphibians – Ask a Biologist Q&A
  28. Nowak . R. T. . Brodie . E. D. . Rib Penetration and Associated Antipredator Adaptations in the Salamander Pleurodeles waltl (Salamandridae) . Copeia . 1978 . 3 . 424–429 . 1978 . 10.2307/1443606 . 1443606 .
  29. 2015-08-17 . Venomous Frogs Use Heads as Weapons . Current Biology . 25 . 16 . 2166–2170 . 10.1016/j.cub.2015.06.061 . 0960-9822 . Jared . Carlos . Mailho-Fontana . Pedro Luiz . Antoniazzi. Marta Maria . Mendes . Vanessa Aparecida . Barbaro . Katia Cristina . Rodrigues . Miguel Trefau t. Brodie . Edmund D. . 3 . 26255851 . 13606620. free . 2015CBio...25.2166J .
  30. Book: Bauchot, Roland . Snakes: A Natural History . 1994 . Sterling . 978-1-4027-3181-5 . 194–209.
  31. Web site: Snake Bites . A. D. A. M. Inc . 30 September 2018 . 16 October 2017.
  32. Hargreaves . Adam D. . Swain . Martin T. . Hegarty . Matthew J. . Logan . Darren W. . Mulley . John F. . Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins . Genome Biology and Evolution . 6 . 8 . 30 July 2014 . 10.1093/gbe/evu166 . 25079342 . 4231632 . 2088–2095.
  33. Daltry . Jennifer C. . Wuester, Wolfgang . Thorpe, Roger S. . 1996 . Diet and snake venom evolution . Nature . 379 . 6565 . 537–540 . 10.1038/379537a0 . 8596631. 1996Natur.379..537D . 4286612 .
  34. Cantrell . F. L. . Envenomation by the Mexican beaded lizard: a case report . Journal of Toxicology. Clinical Toxicology . 41 . 3 . 2003 . 12807305 . 241–244 . 10.1081/CLT-120021105 . 24722441 .
  35. Fry . B. G. . Wroe, S. . Teeuwisse, W. . A central role for venom in predation by Varanus komodoensis (Komodo Dragon) and the extinct giant Varanus (Megalania) priscus . PNAS . 106 . 22 . 8969–8974 . June 2009 . 19451641 . 2690028 . 10.1073/pnas.0810883106 . 2009PNAS..106.8969F . free .
  36. Fry, B. G.; Wuster, W.; Ramjan, S. F. R.; Jackson, T.; Martelli, P.; Kini, R. M. 2003c. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: Evolutionary and toxinological implications. Rapid Communications in Mass Spectrometry 17:2047-2062.
  37. February 2006 . Early evolution of the venom system in lizards and snakes . Nature . 439 . 584–588 . 10.1038/nature04328 . 16292255 . Fry . B. G. . Vidal, N. . Norman, J. A. . Vonk, F. J. . Scheib, H. . Ramjan, S. F. . Kuruppu, S. . Fung, K. . Hedges, S. B. . Richardson, M. K. . Hodgson, W. C. . Ignjatovic, V. . Summerhayes, R. . Kochva, E. . 3 . 7076 . 2006Natur.439..584F . 4386245 .
  38. Benoit . J. . Norton . L. A. . Manger . P. R. . Rubidge . B. S. . Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning techniques . 2017 . PLOS ONE . 12 . 2 . e0172047 . 10.1371/journal.pone.0172047 . 28187210 . 5302418 . 2017PLoSO..1272047B . free .
  39. Nekaris . K. Anne-Isola . Moore . Richard S. . Rode . E. Johanna . Fry . Bryan G. . 2013-09-27 . Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom . Journal of Venomous Animals and Toxins Including Tropical Diseases . 19 . 1 . 21 . 10.1186/1678-9199-19-21. 24074353 . 3852360 . free .
  40. Ligabue-Braun . R. . Verli, H. . Carlini, C. R. . 2012 . Venomous mammals: a review . Toxicon . 59 . 7–8 . 680–695 . 10.1016/j.toxicon.2012.02.012. 22410495 .
  41. Jørn H. Hurum, Zhe-Xi Luo, and Zofia Kielan-Jaworowska, Were mammals originally venomous?, Acta Palaeontologica Polonica 51 (1), 2006: 1-11
  42. Wong . E. S. . Belov . K. . 2012 . Venom evolution through gene duplications . Gene . 496 . 1 . 1–7 . 10.1016/j.gene.2012.01.009 . 22285376 .
  43. ((GBD 2013 Mortality and Causes of Death Collaborators)) . Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013 . Lancet . 17 December 2014 . 25530442 . 10.1016/S0140-6736(14)61682-2 . 4340604 . 385 . 9963 . 117–171.
  44. Mullin . Emily . Animal Venom Database Could Be Boon To Drug Development . Forbes . 30 September 2018 . 29 November 2015.
  45. Pal . S. K. . Gomes . A. . Dasgupta . S. C. . Gomes . A. . Snake venom as therapeutic agents: from toxin to drug development. . Indian Journal of Experimental Biology . 40 . 12 . 2002 . 12974396 . 1353–1358.
  46. Holland . Jennifer S. . The Bite That Heals . https://web.archive.org/web/20180525062346/https://www.nationalgeographic.com/magazine/2013/02/venom/ . dead . 25 May 2018 . . 30 September 2018 . February 2013.
  47. Fox . Eduardo G.P. . Xu . Meng . Wang . Lei . Chen . Li . Lu . Yong-Yue . May 2018 . Speedy milking of fresh venom from aculeate hymenopterans . Toxicon . 146 . 120–123 . 10.1016/j.toxicon.2018.02.050 . 29510162.
  48. Book: Fox, Eduardo Gonçalves Paterson . Venom Toxins of Fire Ants . 2021 . Venom Genomics and Proteomics . 149–167 . Gopalakrishnakone . P. . Juan J. . Calvete . Springer Netherlands . 10.1007/978-94-007-6416-3_38 . 9789400766495 . https://link.springer.com/referenceworkentry/10.1007/978-94-007-6649-5_38-1.
  49. Calvete . Juan J. . December 2013 . Snake venomics: From the inventory of toxins to biology . Toxicon . 75 . 44–62 . 10.1016/j.toxicon.2013.03.020 . 23578513 . 0041-0101.
  50. Arbuckle . Kevin . Rodríguez de la Vega . Ricardo C. . Casewell . Nicholas R. . December 2017 . Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals . Toxicon . 140 . 118–131 . 10.1016/j.toxicon.2017.10.026 . 29111116 . 11196041 .
  51. Dawkins . Richard . Krebs . John Richard . Maynard Smith . J. . Holliday . Robin . 1979-09-21 . Arms races between and within species . Proceedings of the Royal Society of London. Series B. Biological Sciences . 205 . 1161 . 489–511 . 10.1098/rspb.1979.0081 . 42057 . 1979RSPSB.205..489D . 9695900.
  52. Book: McCabe . Thomas M. . Mackessy . Stephen P. . Evolution of Resistance to Toxins in Prey . 2015 . Evolution of Venomous Animals and Their Toxins . 1–19 . Gopalakrishnakone . P. . Toxinology . Springer Netherlands . 10.1007/978-94-007-6727-0_6-1 . 978-94-007-6727-0 . Malhotra . Anita.
  53. Nuismer . Scott L. . Ridenhour . Benjamin J. . Oswald . Benjamin P. . 2007 . Antagonistic Coevolution Mediated by Phenotypic Differences Between Quantitative Traits . Evolution . 61 . 8 . 1823–1834 . 10.1111/j.1558-5646.2007.00158.x . 17683426 . 24103 . free .
  54. Holding . Matthew L. . Drabeck . Danielle H. . Jansa . Sharon A. . Gibbs . H. Lisle . 1 November 2016 . Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations . Integrative and Comparative Biology . 56 . 5 . 1032–1043 . 10.1093/icb/icw082 . 27444525 . 1540-7063 . free.
  55. Calvete . Juan J. . 1 March 2017 . Venomics: integrative venom proteomics and beyond . Biochemical Journal . 474 . 5 . 611–634 . 10.1042/BCJ20160577 . 28219972 . 0264-6021 .
  56. Morgenstern . David . King . Glenn F. . 1 March 2013 . The venom optimization hypothesis revisited . Toxicon . 63 . 120–128 . 10.1016/j.toxicon.2012.11.022 . 23266311 .
  57. Poran . Naomie S. . Coss . Richard G. . Benjamini . Eli . 1987-01-01 . Resistance of California ground squirrels (Spermophilus Beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus Viridis Oreganus): A study of adaptive variation . Toxicon . 25 . 7 . 767–777 . 10.1016/0041-0101(87)90127-9 . 3672545 . 0041-0101.
  58. Coss . Richard G. . Poran . Naomie S. . Gusé . Kevin L. . Smith . David G. . 1993-01-01 . Development of Antisnake Defenses in California Ground Squirrels (Spermophilus Beecheyi): II. Microevolutionary Effects of Relaxed Selection From Rattlesnakes . Behaviour . 124 . 1–2 . 137–162 . 10.1163/156853993X00542 . 0005-7959.
  59. Holding . Matthew L. . Biardi . James E. . Gibbs . H. Lisle . 2016-04-27 . Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey . Proceedings of the Royal Society B: Biological Sciences . 283 . 1829 . 20152841 . 10.1098/rspb.2015.2841 . 4855376 . 27122552.
  60. Book: Conant, Roger . A field guide to reptiles and amphibians of Eastern and Central North America. . 1975 . Houghton Mifflin . 0-395-19979-4 . Second . Boston . 1423604 . registration .
  61. Weinstein . Scott A. . DeWitt . Clement F. . Smith . Leonard A. . December 1992 . Variability of Venom-Neutralizing Properties of Serum from Snakes of the Colubrid Genus Lampropeltis . Journal of Herpetology . 26 . 4 . 452 . 10.2307/1565123 . 1565123 . 53706054 .
  62. Heatwole . Harold . Poran . Naomie S. . 1995-02-15 . Resistances of Sympatric and Allopatric Eels to Sea Snake Venoms . Copeia . 1995 . 1 . 136 . 10.2307/1446808 . 1446808.
  63. Heatwole . Harold . Powell . Judy . May 1998 . Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): a test of coevolution . Toxicon . 36 . 4 . 619–625 . 10.1016/S0041-0101(97)00081-0 . 9643474.
  64. Zimmerman . K. D. . Heatwole . Harold . Davies . H. I. . 1992-03-01 . Survival times and resistance to sea snake (Aipysurus laevis) venom by five species of prey fish . Toxicon . 30 . 3 . 259–264 . 10.1016/0041-0101(92)90868-6 . 1529461 . 0041-0101.
  65. Litsios . Glenn . Sims . Carrie A. . Wüest . Rafael O. . Pearman . Peter B. . Zimmermann . Niklaus E. . Salamin . Nicolas . 2012-11-02 . Mutualism with sea anemones triggered the adaptive radiation of clownfishes . BMC Evolutionary Biology . 12 . 1 . 212 . 10.1186/1471-2148-12-212 . 1471-2148 . 3532366 . 23122007 . free . 2012BMCEE..12..212L .
  66. Fautin . Daphne G. . 1991 . The anemonefish symbiosis: what is known and what is not . Symbiosis . 10 . 23–46 . University of Kansas.
  67. Mebs . Dietrich . 2009-12-15 . Chemical biology of the mutualistic relationships of sea anemones with fish and crustaceans . Toxicon . Cnidarian Toxins and Venoms . 54 . 8 . 1071–1074 . 10.1016/j.toxicon.2009.02.027 . 19268681 . 0041-0101.
  68. Nedosyko . Anita M. . Young . Jeanne E. . Edwards . John W. . Silva . Karen Burke da . 2014-05-30 . Searching for a Toxic Key to Unlock the Mystery of Anemonefish and Anemone Symbiosis . PLOS ONE . 9 . 5 . e98449 . 10.1371/journal.pone.0098449 . 1932-6203 . 4039484 . 24878777 . 2014PLoSO...998449N . free.
  69. Mebs . D. . 1994-09-01 . Anemonefish symbiosis: Vulnerability and resistance of fish to the toxin of the sea anemone . Toxicon . 32 . 9 . 1059–1068 . 10.1016/0041-0101(94)90390-5 . 7801342 . 0041-0101.
  70. Lubbock . R. . Smith . David Cecil . 1980-02-13 . Why are clownfishes not stung by sea anemones? . Proceedings of the Royal Society of London. Series B. Biological Sciences . 207 . 1166 . 35–61 . 10.1098/rspb.1980.0013 . 1980RSPSB.207...35L . 86114704.
  71. Litsios . Glenn . Kostikova . Anna . Salamin . Nicolas . 2014-11-22 . Host specialist clownfishes are environmental niche generalists . Proceedings of the Royal Society B: Biological Sciences . 281 . 1795 . 20133220 . 10.1098/rspb.2013.3220 . 4213602 . 25274370.