In mathematics, in the field of harmonic analysis,the van der Corput lemma is an estimate for oscillatory integralsnamed after the Dutch mathematician J. G. van der Corput.
The following result is stated by E. Stein:[1]
Suppose that a real-valued function
\phi(x)
(a,b)
|\phi(k)(x)|\ge1
x\in(a,b)
k\ge2
k=1
\phi'(x)
x\in\R
ck
\phi
b | |
|\int | |
a |
eiλ\phi(x)|\le
-1/k | |
c | |
kλ |
λ\in\R
The van der Corput lemma is closely related to the sublevel set estimates,[2] which give the upper bound on the measure of the setwhere a function takes values not larger than
\epsilon
Suppose that a real-valued function
\phi(x)
I\subset\R
|\phi(k)(x)|\ge1
x\inI
ck
\phi
\epsilon\ge0
\{x\inI:|\phi(x)|\le\epsilon\}
1/k | |
c | |
k\epsilon |