A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon(s) into a single-mode electromagnetic cavity and reabsorbs them. The atom interacts with a single-mode field confined to a limited volume V in an optical cavity.[1] [2] [3] Spontaneous emission is a consequence of coupling between the atom and the vacuum fluctuations of the cavity field.
A mathematical description of vacuum Rabi oscillation begins with the Jaynes–Cummings model, which describes the interaction between a single mode of a quantized field and a two level system inside an optical cavity. The Hamiltonian for this model in the rotating wave approximation is
\hat{H}JC=\hbar\omega\hat{a}\dagger\hat{a} +\hbar\omega0
\hat{\sigma | |
z}{2} +\hbar |
g
\dagger | |
\left(\hat{a}\hat{\sigma} | |
+ +\hat{a} |
\hat{\sigma}-\right)
where
\hat{\sigmaz}
|e\rangle
|g\rangle
\hbar\omega0
\hat{\sigma}+=|e\rangle\langleg|
\hat{\sigma}-=|g\rangle\langlee|
\hat{a}\dagger
\hat{a}
\hbar\omega
g= | d ⋅ \hat{l{E |
is the strength of the coupling between the dipole moment
d
V
\hat{l{E}}
E\pm(n)=\hbar\omega\left(n+
1 | |
2 |
\right)\pm
\hbar | |
2 |
\sqrt{4g2(n+1)+\delta2}=\hbar
\pm | |
\omega | |
n |
|n,+\rangle=\cos\left(\thetan\right)|g,n+1\rangle+\sin\left(\thetan\right)|e,n\rangle
|n,-\rangle=\sin\left(\thetan\right)|g,n+1\rangle-\cos\left(\thetan\right)|e,n\rangle
where
\delta=\omega0-\omega
\thetan
\thetan=\tan-1\left(
g\sqrt{n+1 | |
Given the eigenstates of the system, the time evolution operator can be written down in the form
\begin{align}
-i\hat{H | |
e | |
JC |
t/\hbar}&=\sum|n,\pm\sum|n',\pm|n,\pm\rangle\langlen,\pm|
-i\hat{H | |
e | |
JC |
t/\hbar}|n',\pm\rangle\langlen',\pm|\\ &=
| |||||
~e |
|g,0\rangle\langleg,0|\\ &~~~+
infty{e | |
\sum | |
n=0 |
| ||||||||||
(\cos{\thetan}|g,n+1\rangle+\sin{\thetan}|e,n\rangle)(\cos{\thetan}\langleg,n+1|+\sin{\thetan}\langlee,n|)}\\ &~~~+
infty{e | |
\sum | |
n=0 |
| ||||||||||
(-\sin{\thetan}|g,n+1\rangle+\cos{\thetan}|e,n\rangle) (-\sin{\thetan}\langleg,n+1|+\cos{\thetan}\langlee,n|)}\\ \end{align}.
If the system starts in the state
|g,n+1\rangle
n+1
-i\hat{H | |
\begin{align} e | |
JC |
t/\hbar}|g,n+1\rangle&=
| ||||||||||
(e |
2{(\theta | |
(\cos | |
n)}|g,n+1\rangle+\sin{\theta |
n}\cos{\thetan}|e,n\rangle) +
| ||||||||||
e |
2{(\theta | |
(-\sin | |
n)}|g,n+1\rangle-\sin{\theta |
n}\cos{\thetan}|e,n\rangle)\\ &=
| ||||||||||
(e |
| ||||||||||
+e |
)\cos{(2\thetan)}|g,n+1\rangle +
| ||||||||||
(e |
| ||||||||||
-e |
)\sin{(2\thetan)}|e,n\rangle\\ &=
| |||||||||||
e | r[\cos{r( |
t | |
2 |
\sqrt{4g2(n+1)+\delta2}r)}r[
\delta2-4g2(n+1) | |
\delta2+4g2(n+1) |
r]|g,n+1\rangle +\sin{r(
t | |
2 |
\sqrt{4g2(n+1)+\delta
| ||||
r]|e,n\rangler] \end{align}.
The probability that the two level system is in the excited state
|e,n\rangle
t
\begin{align} Pe(t)&=|\langle
-i\hat{H | |
e,n|e | |
JC |
t/\hbar}|g,n+1\rangle|2\\ &=
| ||||
\sin |
\sqrt{4g2(n+1)+\delta
| ||||
r]\\ &=
4g2(n+1) | ||||||
|
| ||||
\sin |
r)} \end{align}
where
2(n+1)+\delta | |
\Omega | |
n=\sqrt{4g |
2}
n
2+\delta | |
\Omega | |
0=\sqrt{4g |
2}
t
Pe(t)=
4g2 | ||||||
|
| ||||
\sin |
r).}
For a cavity that admits a single mode perfectly resonant with the energy difference between the two energy levels, the detuning
\delta
Pe(t)
2\pi | |
g |
.
The situation in which
N
\hat{H}JC=\hbar\omega\hat{a}\dagger
N{\hbar | |
\hat{a} +\sum | |
j=1 |
\omega0
\hat{\sigma | |
j |
z}{2} +\hbargj
+ +\hat{a} | |
\left(\hat{a}\hat{\sigma} | |
j |
\dagger
-\right)}. | |
\hat{\sigma} | |
j |
Under the assumption that all two level systems have equal individual coupling strength
g
gN=g\sqrt{N}
\sqrt{N}