Universal differential equation explained

A universal differential equation (UDE) is a non-trivial differential algebraic equation with the property that its solutions can approximate any continuous function on any interval of the real line to any desired level of accuracy.

Precisely, a (possibly implicit) differential equation

P(y',y'',y''',...,y(n))=0

is a UDE if for any continuous real-valued function

f

and for any positive continuous function

\varepsilon

there exist a smooth solution

y

of

P(y',y'',y''',...,y(n))=0

with

|y(x)-f(x)|<\varepsilon(x)

for all

x\in\R

.[1]

The existence of an UDE has been initially regarded as an analogue of the universal Turing machine for analog computers, because of a result of Shannon that identifies the outputs of the general purpose analog computer with the solutions of algebraic differential equations. However, in contrast to universal Turing machines, UDEs do not dictate the evolution of a system, but rather sets out certain conditions that any evolution must fulfill.[2]

Examples

3y\primey\primey\prime-4y\primey\primey\prime+6y\primey\primey\primey\prime+24y\primey\primey\prime-12y\primey\primey\prime-29y\primey\primey\prime+12y\prime=0

n2y\primey\prime+3n(1-n)y\primey\primey\prime+\left(2n2-3n+1\right)y\prime=0

and

ny\primey\prime+(2-3n)y\primey\primey\prime+2(n-1)y\prime=0

, whose solutions are of class

Cn

for n > 3.

y\primey\prime-3y\primey\primey\prime+2\left(1-n-2\right)y\prime=0

, where n > 3.

See also

External links

Notes and References

  1. Rubel . Lee A. . 1981 . A universal differential equation . Bulletin of the American Mathematical Society . en . 4 . 3 . 345–349 . 10.1090/S0273-0979-1981-14910-7 . 0273-0979. free .
  2. Pouly . Amaury . Bournez . Olivier . 2020-02-28 . A Universal Ordinary Differential Equation . Logical Methods in Computer Science . 16. 1 . 1702.08328 . 10.23638/LMCS-16(1:28)2020. 4736209 .
  3. Duffin . R. J. . 1981 . Rubel's universal differential equation . Proceedings of the National Academy of Sciences . 78 . 8 . 4661–4662 . 10.1073/pnas.78.8.4661 . 16593068 . 320216 . 1981PNAS...78.4661D . 0027-8424. free.
  4. Briggs . Keith . 2002-11-08 . Another universal differential equation . math/0211142.