In Riemannian geometry, the unit tangent bundle of a Riemannian manifold (M, g), denoted by T1M, UT(M) or simply UTM, is the unit sphere bundle for the tangent bundle T(M). It is a fiber bundle over M whose fiber at each point is the unit sphere in the tangent bundle:
UT(M):=\coprodx\left\{v\inTx(M)\left|gx(v,v)=1\right.\right\},
where Tx(M) denotes the tangent space to M at x. Thus, elements of UT(M) are pairs (x, v), where x is some point of the manifold and v is some tangent direction (of unit length) to the manifold at x. The unit tangent bundle is equipped with a natural projection
\pi:UT(M)\toM,
\pi:(x,v)\mapstox,
which takes each point of the bundle to its base point. The fiber π-1(x) over each point x ∈ M is an (n-1)-sphere Sn-1, where n is the dimension of M. The unit tangent bundle is therefore a sphere bundle over M with fiber Sn-1.
The definition of unit sphere bundle can easily accommodate Finsler manifolds as well. Specifically, if M is a manifold equipped with a Finsler metric F : TM → R, then the unit sphere bundle is the subbundle of the tangent bundle whose fiber at x is the indicatrix of F:
UTx(M)=\left\{v\inTx(M)\left|F(v)=1\right.\right\}.
If M is an infinite-dimensional manifold (for example, a Banach, Fréchet or Hilbert manifold), then UT(M) can still be thought of as the unit sphere bundle for the tangent bundle T(M), but the fiber π-1(x) over x is then the infinite-dimensional unit sphere in the tangent space.
The unit tangent bundle carries a variety of differential geometric structures. The metric on M induces a contact structure on UTM. This is given in terms of a tautological one-form, defined at a point u of UTM (a unit tangent vector of M) by
\thetau(v)=g(u,\pi*v)
\pi*
Geometrically, this contact structure can be regarded as the distribution of (2n-2)-planes which, at the unit vector u, is the pullback of the orthogonal complement of u in the tangent space of M. This is a contact structure, for the fiber of UTM is obviously an integral manifold (the vertical bundle is everywhere in the kernel of θ), and the remaining tangent directions are filled out by moving up the fiber of UTM. Thus the maximal integral manifold of θ is (an open set of) M itself.
On a Finsler manifold, the contact form is defined by the analogous formula
\thetau(v)=gu(u,\pi*v)
The volume form θ∧dθn-1 defines a measure on M, known as the kinematic measure, or Liouville measure, that is invariant under the geodesic flow of M. As a Radon measure, the kinematic measure μ is defined on compactly supported continuous functions ƒ on UTM by
\intUTMfd\mu=\intMdV(p)
\int | |
UTpM |
\left.f\right| | |
UTpM |
d\mup
The Levi-Civita connection of M gives rise to a splitting of the tangent bundle
T(UTM)=H ⊕ V
gH(v,w)=g(v,w), v,w\inH