A uniform 10-polytope is one which is vertex-transitive, and constructed from uniform facets.
Regular 10-polytopes can be represented by the Schläfli symbol, with x 9-polytope facets around each peak.
There are exactly three such convex regular 10-polytopes:
There are no nonconvex regular 10-polytopes.
The topology of any given 10-polytope is defined by its Betti numbers and torsion coefficients.[1]
The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 10-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[1]
Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.[1]
Uniform 10-polytopes with reflective symmetry can be generated by these three Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:
Coxeter group | Coxeter-Dynkin diagram | |||
---|---|---|---|---|
1 | A10 | [3<sup>9</sup>] | ||
2 | B10 | [4,3<sup>8</sup>] | ||
3 | D10 | [3<sup>7,1,1</sup>] |
Selected regular and uniform 10-polytopes from each family include:
The A10 family has symmetry of order 39,916,800 (11 factorial).
There are 512+16-1=527 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. 31 are shown below: all one and two ringed forms, and the final omnitruncated form. Bowers-style acronym names are given in parentheses for cross-referencing.
Graph | Coxeter-Dynkin diagram Schläfli symbol Name | Element counts | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9-faces | 8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | ||||
1 | t0 10-simplex (ux) | 11 | 55 | 165 | 330 | 462 | 462 | 330 | 165 | 55 | 11 | ||
2 | t1 Rectified 10-simplex (ru) | 495 | 55 | ||||||||||
3 | t2 Birectified 10-simplex (bru) | 1980 | 165 | ||||||||||
4 | t3 Trirectified 10-simplex (tru) | 4620 | 330 | ||||||||||
5 | t4 Quadrirectified 10-simplex (teru) | 6930 | 462 | ||||||||||
6 | t0,1 Truncated 10-simplex (tu) | 550 | 110 | ||||||||||
7 | t0,2 Cantellated 10-simplex | 4455 | 495 | ||||||||||
8 | t1,2 Bitruncated 10-simplex | 2475 | 495 | ||||||||||
9 | t0,3 Runcinated 10-simplex | 15840 | 1320 | ||||||||||
10 | t1,3 Bicantellated 10-simplex | 17820 | 1980 | ||||||||||
11 | t2,3 Tritruncated 10-simplex | 6600 | 1320 | ||||||||||
12 | t0,4 Stericated 10-simplex | 32340 | 2310 | ||||||||||
13 | t1,4 Biruncinated 10-simplex | 55440 | 4620 | ||||||||||
14 | t2,4 Tricantellated 10-simplex | 41580 | 4620 | ||||||||||
15 | t3,4 Quadritruncated 10-simplex | 11550 | 2310 | ||||||||||
16 | t0,5 Pentellated 10-simplex | 41580 | 2772 | ||||||||||
17 | t1,5 Bistericated 10-simplex | 97020 | 6930 | ||||||||||
18 | t2,5 Triruncinated 10-simplex | 110880 | 9240 | ||||||||||
19 | t3,5 Quadricantellated 10-simplex | 62370 | 6930 | ||||||||||
20 | t4,5 Quintitruncated 10-simplex | 13860 | 2772 | ||||||||||
21 | t0,6 Hexicated 10-simplex | 34650 | 2310 | ||||||||||
22 | t1,6 Bipentellated 10-simplex | 103950 | 6930 | ||||||||||
23 | t2,6 Tristericated 10-simplex | 161700 | 11550 | ||||||||||
24 | t3,6 Quadriruncinated 10-simplex | 138600 | 11550 | ||||||||||
25 | t0,7 Heptellated 10-simplex | 18480 | 1320 | ||||||||||
26 | t1,7 Bihexicated 10-simplex | 69300 | 4620 | ||||||||||
27 | t2,7 Tripentellated 10-simplex | 138600 | 9240 | ||||||||||
28 | t0,8 Octellated 10-simplex | 5940 | 495 | ||||||||||
29 | t1,8 Biheptellated 10-simplex | 27720 | 1980 | ||||||||||
30 | t0,9 Ennecated 10-simplex | 990 | 110 | ||||||||||
31 | t0,1,2,3,4,5,6,7,8,9 Omnitruncated 10-simplex | 199584000 | 39916800 |
There are 1023 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.
Twelve cases are shown below: ten single-ring (rectified) forms, and two truncations. Bowers-style acronym names are given in parentheses for cross-referencing.
Graph | Coxeter-Dynkin diagram Schläfli symbol Name | Element counts | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9-faces | 8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | ||||
1 | t0 10-cube (deker) | 20 | 180 | 960 | 3360 | 8064 | 13440 | 15360 | 11520 | 5120 | 1024 | ||
2 | t0,1 Truncated 10-cube (tade) | 51200 | 10240 | ||||||||||
3 | t1 Rectified 10-cube (rade) | 46080 | 5120 | ||||||||||
4 | t2 Birectified 10-cube (brade) | 184320 | 11520 | ||||||||||
5 | t3 Trirectified 10-cube (trade) | 322560 | 15360 | ||||||||||
6 | t4 Quadrirectified 10-cube (terade) | 322560 | 13440 | ||||||||||
7 | t4 Quadrirectified 10-orthoplex (terake) | 201600 | 8064 | ||||||||||
8 | t3 Trirectified 10-orthoplex (trake) | 80640 | 3360 | ||||||||||
9 | t2 Birectified 10-orthoplex (brake) | 20160 | 960 | ||||||||||
10 | t1 Rectified 10-orthoplex (rake) | 2880 | 180 | ||||||||||
11 | t0,1 Truncated 10-orthoplex (take) | 3060 | 360 | ||||||||||
12 | t0 10-orthoplex (ka) | 1024 | 5120 | 11520 | 15360 | 13440 | 8064 | 3360 | 960 | 180 | 20 |
The D10 family has symmetry of order 1,857,945,600 (10 factorial × 29).
This family has 3×256−1=767 Wythoffian uniform polytopes, generated by marking one or more nodes of the D10 Coxeter-Dynkin diagram. Of these, 511 (2×256−1) are repeated from the B10 family and 256 are unique to this family, with 2 listed below. Bowers-style acronym names are given in parentheses for cross-referencing.
Graph | Coxeter-Dynkin diagram Schläfli symbol Name | Element counts | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9-faces | 8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | ||||
1 | 10-demicube (hede) | 532 | 5300 | 24000 | 64800 | 115584 | 142464 | 122880 | 61440 | 11520 | 512 | ||
2 | Truncated 10-demicube (thede) | 195840 | 23040 |
There are four fundamental affine Coxeter groups that generate regular and uniform tessellations in 9-space:
Coxeter group | Coxeter-Dynkin diagram | |||
---|---|---|---|---|
1 | {\tilde{A}}9 | [3<sup>[10]] | ||
2 | {\tilde{B}}9 | [4,3<sup>7</sup>,4] | ||
3 | {\tilde{C}}9 | h[4,3<sup>7</sup>,4] [4,3<sup>6</sup>,3<sup>1,1</sup>] | ||
4 | {\tilde{D}}9 | q[4,3<sup>7</sup>,4] [3<sup>1,1</sup>,3<sup>5</sup>,3<sup>1,1</sup>] |
Regular and uniform tessellations include:
There are no compact hyperbolic Coxeter groups of rank 10, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 3 paracompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 9-space as permutations of rings of the Coxeter diagrams.
{\bar{Q}}9 | {\bar{S}}9 | E10 {\bar{T}}9 |
Three honeycombs from the
E10