Uniform 9-polytope explained

In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.

A uniform 9-polytope is one which is vertex-transitive, and constructed from uniform 8-polytope facets.

Regular 9-polytopes

Regular 9-polytopes can be represented by the Schläfli symbol, with w 8-polytope facets around each peak.

There are exactly three such convex regular 9-polytopes:

  1. - 9-simplex
  2. - 9-cube
  3. - 9-orthoplex

There are no nonconvex regular 9-polytopes.

Euler characteristic

The topology of any given 9-polytope is defined by its Betti numbers and torsion coefficients.[1]

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[1]

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.[1]

Uniform 9-polytopes by fundamental Coxeter groups

Uniform 9-polytopes with reflective symmetry can be generated by these three Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:

Coxeter groupCoxeter-Dynkin diagram
A9[3<sup>8</sup>]
B9[4,3<sup>7</sup>]
D9[3<sup>6,1,1</sup>]

Selected regular and uniform 9-polytopes from each family include:

The A9 family

The A9 family has symmetry of order 3628800 (10 factorial).

There are 256+16-1=271 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. These are all enumerated below. Bowers-style acronym names are given in parentheses for cross-referencing.

GraphCoxeter-Dynkin diagram
Schläfli symbol
Name
Element counts
8-faces7-faces6-faces5-faces4-facesCellsFacesEdgesVertices
1
t0
9-simplex (day)
10451202102522101204510
2
t1
Rectified 9-simplex (reday)
360 45
3
t2
Birectified 9-simplex (breday)
1260 120
4
t3
Trirectified 9-simplex (treday)
2520 210
5
t4
Quadrirectified 9-simplex (icoy)
3150 252
6
t0,1
Truncated 9-simplex (teday)
405 90
7
t0,2
Cantellated 9-simplex
2880 360
8
t1,2
Bitruncated 9-simplex
1620 360
9
t0,3
Runcinated 9-simplex
8820 840
10
t1,3
Bicantellated 9-simplex
10080 1260
11
t2,3
Tritruncated 9-simplex (treday)
3780 840
12
t0,4
Stericated 9-simplex
15120 1260
13
t1,4
Biruncinated 9-simplex
26460 2520
14
t2,4
Tricantellated 9-simplex
20160 2520
15
t3,4
Quadritruncated 9-simplex
5670 1260
16
t0,5
Pentellated 9-simplex
15750 1260
17
t1,5
Bistericated 9-simplex
37800 3150
18
t2,5
Triruncinated 9-simplex
44100 4200
19
t3,5
Quadricantellated 9-simplex
25200 3150
20
t0,6
Hexicated 9-simplex
10080 840
21
t1,6
Bipentellated 9-simplex
31500 2520
22
t2,6
Tristericated 9-simplex
50400 4200
23
t0,7
Heptellated 9-simplex
3780 360
24
t1,7
Bihexicated 9-simplex
15120 1260
25
t0,8
Octellated 9-simplex
720 90
26
t0,1,2
Cantitruncated 9-simplex
3240 720
27
t0,1,3
Runcitruncated 9-simplex
18900 2520
28
t0,2,3
Runcicantellated 9-simplex
12600 2520
29
t1,2,3
Bicantitruncated 9-simplex
11340 2520
30
t0,1,4
Steritruncated 9-simplex
47880 5040
31
t0,2,4
Stericantellated 9-simplex
60480 7560
32
t1,2,4
Biruncitruncated 9-simplex
52920 7560
33
t0,3,4
Steriruncinated 9-simplex
27720 5040
34
t1,3,4
Biruncicantellated 9-simplex
41580 7560
35
t2,3,4
Tricantitruncated 9-simplex
22680 5040
36
t0,1,5
Pentitruncated 9-simplex
66150 6300
37
t0,2,5
Penticantellated 9-simplex
126000 12600
38
t1,2,5
Bisteritruncated 9-simplex
107100 12600
39
t0,3,5
Pentiruncinated 9-simplex
107100 12600
40
t1,3,5
Bistericantellated 9-simplex
151200 18900
41
t2,3,5
Triruncitruncated 9-simplex
81900 12600
42
t0,4,5
Pentistericated 9-simplex
37800 6300
43
t1,4,5
Bisteriruncinated 9-simplex
81900 12600
44
t2,4,5
Triruncicantellated 9-simplex
75600 12600
45
t3,4,5
Quadricantitruncated 9-simplex
28350 6300
46
t0,1,6
Hexitruncated 9-simplex
52920 5040
47
t0,2,6
Hexicantellated 9-simplex
138600 12600
48
t1,2,6
Bipentitruncated 9-simplex
113400 12600
49
t0,3,6
Hexiruncinated 9-simplex
176400 16800
50
t1,3,6
Bipenticantellated 9-simplex
239400 25200
51
t2,3,6
Tristeritruncated 9-simplex
126000 16800
52
t0,4,6
Hexistericated 9-simplex
113400 12600
53
t1,4,6
Bipentiruncinated 9-simplex
226800 25200
54
t2,4,6
Tristericantellated 9-simplex
201600 25200
55
t0,5,6
Hexipentellated 9-simplex
32760 5040
56
t1,5,6
Bipentistericated 9-simplex
94500 12600
57
t0,1,7
Heptitruncated 9-simplex
23940 2520
58
t0,2,7
Hepticantellated 9-simplex
83160 7560
59
t1,2,7
Bihexitruncated 9-simplex
64260 7560
60
t0,3,7
Heptiruncinated 9-simplex
144900 12600
61
t1,3,7
Bihexicantellated 9-simplex
189000 18900
62
t0,4,7
Heptistericated 9-simplex
138600 12600
63
t1,4,7
Bihexiruncinated 9-simplex
264600 25200
64
t0,5,7
Heptipentellated 9-simplex
71820 7560
65
t0,6,7
Heptihexicated 9-simplex
17640 2520
66
t0,1,8
Octitruncated 9-simplex
5400 720
67
t0,2,8
Octicantellated 9-simplex
25200 2520
68
t0,3,8
Octiruncinated 9-simplex
57960 5040
69
t0,4,8
Octistericated 9-simplex
75600 6300
70
t0,1,2,3
Runcicantitruncated 9-simplex
22680 5040
71
t0,1,2,4
Stericantitruncated 9-simplex
105840 15120
72
t0,1,3,4
Steriruncitruncated 9-simplex
75600 15120
73
t0,2,3,4
Steriruncicantellated 9-simplex
75600 15120
74
t1,2,3,4
Biruncicantitruncated 9-simplex
68040 15120
75
t0,1,2,5
Penticantitruncated 9-simplex
214200 25200
76
t0,1,3,5
Pentiruncitruncated 9-simplex
283500 37800
77
t0,2,3,5
Pentiruncicantellated 9-simplex
264600 37800
78
t1,2,3,5
Bistericantitruncated 9-simplex
245700 37800
79
t0,1,4,5
Pentisteritruncated 9-simplex
138600 25200
80
t0,2,4,5
Pentistericantellated 9-simplex
226800 37800
81
t1,2,4,5
Bisteriruncitruncated 9-simplex
189000 37800
82
t0,3,4,5
Pentisteriruncinated 9-simplex
138600 25200
83
t1,3,4,5
Bisteriruncicantellated 9-simplex
207900 37800
84
t2,3,4,5
Triruncicantitruncated 9-simplex
113400 25200
85
t0,1,2,6
Hexicantitruncated 9-simplex
226800 25200
86
t0,1,3,6
Hexiruncitruncated 9-simplex
453600 50400
87
t0,2,3,6
Hexiruncicantellated 9-simplex
403200 50400
88
t1,2,3,6
Bipenticantitruncated 9-simplex
378000 50400
89
t0,1,4,6
Hexisteritruncated 9-simplex
403200 50400
90
t0,2,4,6
Hexistericantellated 9-simplex
604800 75600
91
t1,2,4,6
Bipentiruncitruncated 9-simplex
529200 75600
92
t0,3,4,6
Hexisteriruncinated 9-simplex
352800 50400
93
t1,3,4,6
Bipentiruncicantellated 9-simplex
529200 75600
94
t2,3,4,6
Tristericantitruncated 9-simplex
302400 50400
95
t0,1,5,6
Hexipentitruncated 9-simplex
151200 25200
96
t0,2,5,6
Hexipenticantellated 9-simplex
352800 50400
97
t1,2,5,6
Bipentisteritruncated 9-simplex
277200 50400
98
t0,3,5,6
Hexipentiruncinated 9-simplex
352800 50400
99
t1,3,5,6
Bipentistericantellated 9-simplex
491400 75600
100
t2,3,5,6
Tristeriruncitruncated 9-simplex
252000 50400
101
t0,4,5,6
Hexipentistericated 9-simplex
151200 25200
102
t1,4,5,6
Bipentisteriruncinated 9-simplex
327600 50400
103
t0,1,2,7
Hepticantitruncated 9-simplex
128520 15120
104
t0,1,3,7
Heptiruncitruncated 9-simplex
359100 37800
105
t0,2,3,7
Heptiruncicantellated 9-simplex
302400 37800
106
t1,2,3,7
Bihexicantitruncated 9-simplex
283500 37800
107
t0,1,4,7
Heptisteritruncated 9-simplex
478800 50400
108
t0,2,4,7
Heptistericantellated 9-simplex
680400 75600
109
t1,2,4,7
Bihexiruncitruncated 9-simplex
604800 75600
110
t0,3,4,7
Heptisteriruncinated 9-simplex
378000 50400
111
t1,3,4,7
Bihexiruncicantellated 9-simplex
567000 75600
112
t0,1,5,7
Heptipentitruncated 9-simplex
321300 37800
113
t0,2,5,7
Heptipenticantellated 9-simplex
680400 75600
114
t1,2,5,7
Bihexisteritruncated 9-simplex
567000 75600
115
t0,3,5,7
Heptipentiruncinated 9-simplex
642600 75600
116
t1,3,5,7
Bihexistericantellated 9-simplex
907200 113400
117
t0,4,5,7
Heptipentistericated 9-simplex
264600 37800
118
t0,1,6,7
Heptihexitruncated 9-simplex
98280 15120
119
t0,2,6,7
Heptihexicantellated 9-simplex
302400 37800
120
t1,2,6,7
Bihexipentitruncated 9-simplex
226800 37800
121
t0,3,6,7
Heptihexiruncinated 9-simplex
428400 50400
122
t0,4,6,7
Heptihexistericated 9-simplex
302400 37800
123
t0,5,6,7
Heptihexipentellated 9-simplex
98280 15120
124
t0,1,2,8
Octicantitruncated 9-simplex
35280 5040
125
t0,1,3,8
Octiruncitruncated 9-simplex
136080 15120
126
t0,2,3,8
Octiruncicantellated 9-simplex
105840 15120
127
t0,1,4,8
Octisteritruncated 9-simplex
252000 25200
128
t0,2,4,8
Octistericantellated 9-simplex
340200 37800
129
t0,3,4,8
Octisteriruncinated 9-simplex
176400 25200
130
t0,1,5,8
Octipentitruncated 9-simplex
252000 25200
131
t0,2,5,8
Octipenticantellated 9-simplex
504000 50400
132
t0,3,5,8
Octipentiruncinated 9-simplex
453600 50400
133
t0,1,6,8
Octihexitruncated 9-simplex
136080 15120
134
t0,2,6,8
Octihexicantellated 9-simplex
378000 37800
135
t0,1,7,8
Octiheptitruncated 9-simplex
35280 5040
136
t0,1,2,3,4
Steriruncicantitruncated 9-simplex
136080 30240
137
t0,1,2,3,5
Pentiruncicantitruncated 9-simplex
491400 75600
138
t0,1,2,4,5
Pentistericantitruncated 9-simplex
378000 75600
139
t0,1,3,4,5
Pentisteriruncitruncated 9-simplex
378000 75600
140
t0,2,3,4,5
Pentisteriruncicantellated 9-simplex
378000 75600
141
t1,2,3,4,5
Bisteriruncicantitruncated 9-simplex
340200 75600
142
t0,1,2,3,6
Hexiruncicantitruncated 9-simplex
756000 100800
143
t0,1,2,4,6
Hexistericantitruncated 9-simplex
1058400 151200
144
t0,1,3,4,6
Hexisteriruncitruncated 9-simplex
982800 151200
145
t0,2,3,4,6
Hexisteriruncicantellated 9-simplex
982800 151200
146
t1,2,3,4,6
Bipentiruncicantitruncated 9-simplex
907200 151200
147
t0,1,2,5,6
Hexipenticantitruncated 9-simplex
554400 100800
148
t0,1,3,5,6
Hexipentiruncitruncated 9-simplex
907200 151200
149
t0,2,3,5,6
Hexipentiruncicantellated 9-simplex
831600 151200
150
t1,2,3,5,6
Bipentistericantitruncated 9-simplex
756000 151200
151
t0,1,4,5,6
Hexipentisteritruncated 9-simplex
554400 100800
152
t0,2,4,5,6
Hexipentistericantellated 9-simplex
907200 151200
153
t1,2,4,5,6
Bipentisteriruncitruncated 9-simplex
756000 151200
154
t0,3,4,5,6
Hexipentisteriruncinated 9-simplex
554400 100800
155
t1,3,4,5,6
Bipentisteriruncicantellated 9-simplex
831600 151200
156
t2,3,4,5,6
Tristeriruncicantitruncated 9-simplex
453600 100800
157
t0,1,2,3,7
Heptiruncicantitruncated 9-simplex
567000 75600
158
t0,1,2,4,7
Heptistericantitruncated 9-simplex
1209600 151200
159
t0,1,3,4,7
Heptisteriruncitruncated 9-simplex
1058400 151200
160
t0,2,3,4,7
Heptisteriruncicantellated 9-simplex
1058400 151200
161
t1,2,3,4,7
Bihexiruncicantitruncated 9-simplex
982800 151200
162
t0,1,2,5,7
Heptipenticantitruncated 9-simplex
1134000 151200
163
t0,1,3,5,7
Heptipentiruncitruncated 9-simplex
1701000 226800
164
t0,2,3,5,7
Heptipentiruncicantellated 9-simplex
1587600 226800
165
t1,2,3,5,7
Bihexistericantitruncated 9-simplex
1474200 226800
166
t0,1,4,5,7
Heptipentisteritruncated 9-simplex
982800 151200
167
t0,2,4,5,7
Heptipentistericantellated 9-simplex
1587600 226800
168
t1,2,4,5,7
Bihexisteriruncitruncated 9-simplex
1360800 226800
169
t0,3,4,5,7
Heptipentisteriruncinated 9-simplex
982800 151200
170
t1,3,4,5,7
Bihexisteriruncicantellated 9-simplex
1474200 226800
171
t0,1,2,6,7
Heptihexicantitruncated 9-simplex
453600 75600
172
t0,1,3,6,7
Heptihexiruncitruncated 9-simplex
1058400 151200
173
t0,2,3,6,7
Heptihexiruncicantellated 9-simplex
907200 151200
174
t1,2,3,6,7
Bihexipenticantitruncated 9-simplex
831600 151200
175
t0,1,4,6,7
Heptihexisteritruncated 9-simplex
1058400 151200
176
t0,2,4,6,7
Heptihexistericantellated 9-simplex
1587600 226800
177
t1,2,4,6,7
Bihexipentiruncitruncated 9-simplex
1360800 226800
178
t0,3,4,6,7
Heptihexisteriruncinated 9-simplex
907200 151200
179
t0,1,5,6,7
Heptihexipentitruncated 9-simplex
453600 75600
180
t0,2,5,6,7
Heptihexipenticantellated 9-simplex
1058400 151200
181
t0,3,5,6,7
Heptihexipentiruncinated 9-simplex
1058400 151200
182
t0,4,5,6,7
Heptihexipentistericated 9-simplex
453600 75600
183
t0,1,2,3,8
Octiruncicantitruncated 9-simplex
196560 30240
184
t0,1,2,4,8
Octistericantitruncated 9-simplex
604800 75600
185
t0,1,3,4,8
Octisteriruncitruncated 9-simplex
491400 75600
186
t0,2,3,4,8
Octisteriruncicantellated 9-simplex
491400 75600
187
t0,1,2,5,8
Octipenticantitruncated 9-simplex
856800 100800
188
t0,1,3,5,8
Octipentiruncitruncated 9-simplex
1209600 151200
189
t0,2,3,5,8
Octipentiruncicantellated 9-simplex
1134000 151200
190
t0,1,4,5,8
Octipentisteritruncated 9-simplex
655200 100800
191
t0,2,4,5,8
Octipentistericantellated 9-simplex
1058400 151200
192
t0,3,4,5,8
Octipentisteriruncinated 9-simplex
655200 100800
193
t0,1,2,6,8
Octihexicantitruncated 9-simplex
604800 75600
194
t0,1,3,6,8
Octihexiruncitruncated 9-simplex
1285200 151200
195
t0,2,3,6,8
Octihexiruncicantellated 9-simplex
1134000 151200
196
t0,1,4,6,8
Octihexisteritruncated 9-simplex
1209600 151200
197
t0,2,4,6,8
Octihexistericantellated 9-simplex
1814400 226800
198
t0,1,5,6,8
Octihexipentitruncated 9-simplex
491400 75600
199
t0,1,2,7,8
Octihepticantitruncated 9-simplex
196560 30240
200
t0,1,3,7,8
Octiheptiruncitruncated 9-simplex
604800 75600
201
t0,1,4,7,8
Octiheptisteritruncated 9-simplex
856800 100800
202
t0,1,2,3,4,5
Pentisteriruncicantitruncated 9-simplex
680400 151200
203
t0,1,2,3,4,6
Hexisteriruncicantitruncated 9-simplex
1814400 302400
204
t0,1,2,3,5,6
Hexipentiruncicantitruncated 9-simplex
1512000 302400
205
t0,1,2,4,5,6
Hexipentistericantitruncated 9-simplex
1512000 302400
206
t0,1,3,4,5,6
Hexipentisteriruncitruncated 9-simplex
1512000 302400
207
t0,2,3,4,5,6
Hexipentisteriruncicantellated 9-simplex
1512000 302400
208
t1,2,3,4,5,6
Bipentisteriruncicantitruncated 9-simplex
1360800 302400
209
t0,1,2,3,4,7
Heptisteriruncicantitruncated 9-simplex
1965600 302400
210
t0,1,2,3,5,7
Heptipentiruncicantitruncated 9-simplex
2948400 453600
211
t0,1,2,4,5,7
Heptipentistericantitruncated 9-simplex
2721600 453600
212
t0,1,3,4,5,7
Heptipentisteriruncitruncated 9-simplex
2721600 453600
213
t0,2,3,4,5,7
Heptipentisteriruncicantellated 9-simplex
2721600 453600
214
t1,2,3,4,5,7
Bihexisteriruncicantitruncated 9-simplex
2494800 453600
215
t0,1,2,3,6,7
Heptihexiruncicantitruncated 9-simplex
1663200 302400
216
t0,1,2,4,6,7
Heptihexistericantitruncated 9-simplex
2721600 453600
217
t0,1,3,4,6,7
Heptihexisteriruncitruncated 9-simplex
2494800 453600
218
t0,2,3,4,6,7
Heptihexisteriruncicantellated 9-simplex
2494800 453600
219
t1,2,3,4,6,7
Bihexipentiruncicantitruncated 9-simplex
2268000 453600
220
t0,1,2,5,6,7
Heptihexipenticantitruncated 9-simplex
1663200 302400
221
t0,1,3,5,6,7
Heptihexipentiruncitruncated 9-simplex
2721600 453600
222
t0,2,3,5,6,7
Heptihexipentiruncicantellated 9-simplex
2494800 453600
223
t1,2,3,5,6,7
Bihexipentistericantitruncated 9-simplex
2268000 453600
224
t0,1,4,5,6,7
Heptihexipentisteritruncated 9-simplex
1663200 302400
225
t0,2,4,5,6,7
Heptihexipentistericantellated 9-simplex
2721600 453600
226
t0,3,4,5,6,7
Heptihexipentisteriruncinated 9-simplex
1663200 302400
227
t0,1,2,3,4,8
Octisteriruncicantitruncated 9-simplex
907200 151200
228
t0,1,2,3,5,8
Octipentiruncicantitruncated 9-simplex
2116800 302400
229
t0,1,2,4,5,8
Octipentistericantitruncated 9-simplex
1814400 302400
230
t0,1,3,4,5,8
Octipentisteriruncitruncated 9-simplex
1814400 302400
231
t0,2,3,4,5,8
Octipentisteriruncicantellated 9-simplex
1814400 302400
232
t0,1,2,3,6,8
Octihexiruncicantitruncated 9-simplex
2116800 302400
233
t0,1,2,4,6,8
Octihexistericantitruncated 9-simplex
3175200 453600
234
t0,1,3,4,6,8
Octihexisteriruncitruncated 9-simplex
2948400 453600
235
t0,2,3,4,6,8
Octihexisteriruncicantellated 9-simplex
2948400 453600
236
t0,1,2,5,6,8
Octihexipenticantitruncated 9-simplex
1814400 302400
237
t0,1,3,5,6,8
Octihexipentiruncitruncated 9-simplex
2948400 453600
238
t0,2,3,5,6,8
Octihexipentiruncicantellated 9-simplex
2721600 453600
239
t0,1,4,5,6,8
Octihexipentisteritruncated 9-simplex
1814400 302400
240
t0,1,2,3,7,8
Octiheptiruncicantitruncated 9-simplex
907200 151200
241
t0,1,2,4,7,8
Octiheptistericantitruncated 9-simplex
2116800 302400
242
t0,1,3,4,7,8
Octiheptisteriruncitruncated 9-simplex
1814400 302400
243
t0,1,2,5,7,8
Octiheptipenticantitruncated 9-simplex
2116800 302400
244
t0,1,3,5,7,8
Octiheptipentiruncitruncated 9-simplex
3175200 453600
245
t0,1,2,6,7,8
Octiheptihexicantitruncated 9-simplex
907200 151200
246
t0,1,2,3,4,5,6
Hexipentisteriruncicantitruncated 9-simplex
2721600 604800
247
t0,1,2,3,4,5,7
Heptipentisteriruncicantitruncated 9-simplex
4989600 907200
248
t0,1,2,3,4,6,7
Heptihexisteriruncicantitruncated 9-simplex
4536000 907200
249
t0,1,2,3,5,6,7
Heptihexipentiruncicantitruncated 9-simplex
4536000 907200
250
t0,1,2,4,5,6,7
Heptihexipentistericantitruncated 9-simplex
4536000 907200
251
t0,1,3,4,5,6,7
Heptihexipentisteriruncitruncated 9-simplex
4536000 907200
252
t0,2,3,4,5,6,7
Heptihexipentisteriruncicantellated 9-simplex
4536000 907200
253
t1,2,3,4,5,6,7
Bihexipentisteriruncicantitruncated 9-simplex
4082400 907200
254
t0,1,2,3,4,5,8
Octipentisteriruncicantitruncated 9-simplex
3326400 604800
255
t0,1,2,3,4,6,8
Octihexisteriruncicantitruncated 9-simplex
5443200 907200
256
t0,1,2,3,5,6,8
Octihexipentiruncicantitruncated 9-simplex
4989600 907200
257
t0,1,2,4,5,6,8
Octihexipentistericantitruncated 9-simplex
4989600 907200
258
t0,1,3,4,5,6,8
Octihexipentisteriruncitruncated 9-simplex
4989600 907200
259
t0,2,3,4,5,6,8
Octihexipentisteriruncicantellated 9-simplex
4989600 907200
260
t0,1,2,3,4,7,8
Octiheptisteriruncicantitruncated 9-simplex
3326400 604800
261
t0,1,2,3,5,7,8
Octiheptipentiruncicantitruncated 9-simplex
5443200 907200
262
t0,1,2,4,5,7,8
Octiheptipentistericantitruncated 9-simplex
4989600 907200
263
t0,1,3,4,5,7,8
Octiheptipentisteriruncitruncated 9-simplex
4989600 907200
264
t0,1,2,3,6,7,8
Octiheptihexiruncicantitruncated 9-simplex
3326400 604800
265
t0,1,2,4,6,7,8
Octiheptihexistericantitruncated 9-simplex
5443200 907200
266
t0,1,2,3,4,5,6,7
Heptihexipentisteriruncicantitruncated 9-simplex
8164800 1814400
267
t0,1,2,3,4,5,6,8
Octihexipentisteriruncicantitruncated 9-simplex
9072000 1814400
268
t0,1,2,3,4,5,7,8
Octiheptipentisteriruncicantitruncated 9-simplex
9072000 1814400
269
t0,1,2,3,4,6,7,8
Octiheptihexisteriruncicantitruncated 9-simplex
9072000 1814400
270
t0,1,2,3,5,6,7,8
Octiheptihexipentiruncicantitruncated 9-simplex
9072000 1814400
271
t0,1,2,3,4,5,6,7,8
Omnitruncated 9-simplex
16329600 3628800

The B9 family

There are 511 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.

Eleven cases are shown below: Nine rectified forms and 2 truncations. Bowers-style acronym names are given in parentheses for cross-referencing. Bowers-style acronym names are given in parentheses for cross-referencing.

GraphCoxeter-Dynkin diagram
Schläfli symbol
Name
Element counts
8-faces7-faces6-faces5-faces4-facesCellsFacesEdgesVertices
1
t0
9-cube (enne)
1814467220164032537646082304512
2
t0,1
Truncated 9-cube (ten)
2304 4608
3
t1
Rectified 9-cube (ren)
18432 2304
4
t2
Birectified 9-cube (barn)
64512 4608
5
t3
Trirectified 9-cube (tarn)
96768 5376
6
t4
Quadrirectified 9-cube (nav)
(Quadrirectified 9-orthoplex)
806404032
7
t3
Trirectified 9-orthoplex (tarv)
40320 2016
8
t2
Birectified 9-orthoplex (brav)
12096 672
9
t1
Rectified 9-orthoplex (riv)
2016 144
10
t0,1
Truncated 9-orthoplex (tiv)
2160 288
11
t0
9-orthoplex (vee)
5122304460853764032201667214418

The D9 family

The D9 family has symmetry of order 92,897,280 (9 factorial × 28).

This family has 3×128−1=383 Wythoffian uniform polytopes, generated by marking one or more nodes of the D9 Coxeter-Dynkin diagram. Of these, 255 (2×128−1) are repeated from the B9 family and 128 are unique to this family, with the eight 1 or 2 ringed forms listed below. Bowers-style acronym names are given in parentheses for cross-referencing.

Regular and uniform honeycombs

There are five fundamental affine Coxeter groups that generate regular and uniform tessellations in 8-space:

Coxeter groupCoxeter diagramForms
1

{\tilde{A}}8

[3<sup>[9]]45
2

{\tilde{C}}8

[4,3<sup>6</sup>,4]271
3

{\tilde{B}}8

h[4,3<sup>6</sup>,4]
[4,3<sup>5</sup>,3<sup>1,1</sup>]
383 (128 new)
4

{\tilde{D}}8

q[4,3<sup>6</sup>,4]
[3<sup>1,1</sup>,3<sup>4</sup>,3<sup>1,1</sup>]
155 (15 new)
5

{\tilde{E}}8

[3<sup>5,2,1</sup>]511

Regular and uniform tessellations include:

{\tilde{A}}8

45 uniquely ringed forms

{\tilde{C}}8

271 uniquely ringed forms

{\tilde{B}}8

: 383 uniquely ringed forms, 255 shared with

{\tilde{C}}8

, 128 new

{\tilde{D}}8

, [3<sup>1,1</sup>,3<sup>4</sup>,3<sup>1,1</sup>]: 155 unique ring permutations, and 15 are new, the first,, Coxeter called a quarter 8-cubic honeycomb, representing as q, or qδ9.

{\tilde{E}}8

511 forms

Regular and uniform hyperbolic honeycombs

There are no compact hyperbolic Coxeter groups of rank 9, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 4 paracompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 8-space as permutations of rings of the Coxeter diagrams.

{\bar{P}}8

= [3,3<sup>[8]]:

{\bar{Q}}8

= [3<sup>1,1</sup>,3<sup>3</sup>,3<sup>2,1</sup>]:

{\bar{S}}8

= [4,3<sup>4</sup>,3<sup>2,1</sup>]:

{\bar{T}}8

= [3<sup>4,3,1</sup>]:

References

External links

Notes and References

  1. Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.