Uncertainty theory (Liu) should not be confused with Uncertainty principle.
The uncertainty theory invented by Baoding Liu[1] is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.
Mathematical measures of the likelihood of an event being true include probability theory, capacity, fuzzy logic, possibility, and credibility, as well as uncertainty.
Axiom 1. (Normality Axiom)
l{M}\{\Gamma\}=1fortheuniversalset\Gamma
Axiom 2. (Self-Duality Axiom) .
Axiom 3. (Countable Subadditivity Axiom) For every countable sequence of events
Λ1,Λ2,\ldots
inftyΛ | |
l{M}\left\{cup | |
i\right\}\le\sum |
inftyl{M}\{Λ | |
i\} |
Axiom 4. (Product Measure Axiom) Let
(\Gammak,l{L}k,l{M}k)
k=1,2,\ldots,n
l{M}
nΛ | |
l{M}\left\{\prod | |
i\right\}=\underset{1\le |
i\len}{\operatorname{min}}l{M}i\{Λi\}
Principle. (Maximum Uncertainty Principle) For any event, if there are multiple reasonable values that an uncertain measure may take, then the value as close to 0.5 as possible is assigned to the event.
An uncertain variable is a measurable function ξ from an uncertainty space
(\Gamma,L,M)
\{\xi\inB\}=\{\gamma\in\Gamma\mid\xi(\gamma)\inB\}
Uncertainty distribution is inducted to describe uncertain variables.
Definition: The uncertainty distribution
\Phi(x):R → [0,1]
\Phi(x)=M\{\xi\leqx\}
Theorem (Peng and Iwamura, Sufficient and Necessary Condition for Uncertainty Distribution): A function
\Phi(x):R → [0,1]
\Phi(x)\equiv0
\Phi(x)\equiv1
Definition: The uncertain variables
\xi1,\xi2,\ldots,\xim
m(\xi | |
M\{\cap | |
i=1 |
\inBi)\}=min1\leqM\{\xii\inBi\}
B1,B2,\ldots,Bm
Theorem 1: The uncertain variables
\xi1,\xi2,\ldots,\xim
m(\xi | |
M\{\cup | |
i=1 |
\inBi)\}=max1\leqM\{\xii\inBi\}
B1,B2,\ldots,Bm
Theorem 2: Let
\xi1,\xi2,\ldots,\xim
f1,f2,\ldots,fm
f1(\xi1),f2(\xi2),\ldots,fm(\xim)
Theorem 3: Let
\Phii
\xii, i=1,2,\ldots,m
\Phi
(\xi1,\xi2,\ldots,\xim)
\xi1,\xi2,\ldots,\xim
\Phi(x1,x2,\ldots,xm)=min1\leq\Phii(xi)
x1,x2,\ldots,xm
Theorem: Let
\xi1,\xi2,\ldots,\xim
f:Rn → R
\xi=f(\xi1,\xi2,\ldots,\xim)
l{M}\{\xi\inB\}=\begin{cases}\underset{f(B1,B2, … ,Bn)\subsetB}{\sup} \underset{1\lek\len}{min}l{M}k\{\xik\inBk\},&if\underset{f(B1,B2, … ,Bn)\subsetB}{\sup} \underset{1\lek\len}{min}l{M}k\{\xik\inBk\}>0.5\ 1-\underset{f(B1,B2, … ,Bn)\subsetBc}{\sup} \underset{1\lek\len}{min}l{M}k\{\xik\inBk\},&if\underset{f(B1,B2, … ,Bn)\subsetBc}{\sup} \underset{1\lek\len}{min}l{M}k\{\xik\inBk\}>0.5\ 0.5,&otherwise\end{cases}
B,B1,B2,\ldots,Bm
f(B1,B2,\ldots,Bm)\subsetB
f(x1,x2,\ldots,xm)\inB
x1\inB1,x2\inB2,\ldots,xm\inBm
Definition: Let
\xi
\xi
+infty | |
E[\xi]=\int | |
0 |
M\{\xi\geq
0M\{\xi\leq | |
r\}dr-\int | |
-infty |
r\}dr
Theorem 1: Let
\xi
\Phi
+infty | |
E[\xi]=\int | |
0 |
0\Phi(x)dx. | |
(1-\Phi(x))dx-\int | |
-infty |
Theorem 2: Let
\xi
\Phi
1\Phi | |
E[\xi]=\int | |
0 |
-1(\alpha)d\alpha.
Theorem 3: Let
\xi
η
a
b
E[a\xi+bη]=aE[\xi]+b[η].
Definition: Let
\xi
e
\xi
V[\xi]=E[(\xi-e)2].
Theorem: If
\xi
a
b
V[a\xi+b]=a2V[\xi].
Definition: Let
\xi
\alpha\in(0,1]
\xisup(\alpha)=\sup\{r\midM\{\xi\geqr\}\geq\alpha\}
\xi
\xiinf(\alpha)=inf\{r\midM\{\xi\leqr\}\geq\alpha\}
\xi
Theorem 1: Let
\xi
\Phi
\xisup(\alpha)=\Phi-1(1-\alpha)
\xiinf(\alpha)=\Phi-1(\alpha)
Theorem 2: Let
\xi
\alpha\in(0,1]
\alpha>0.5
\xiinf(\alpha)\geq\xisup(\alpha)
\alpha\leq0.5
\xiinf(\alpha)\leq\xisup(\alpha)
Theorem 3: Suppose that
\xi
η
\alpha\in(0,1]
(\xi+η)sup(\alpha)=\xisup(\alpha)+ηsup{\alpha}
(\xi+η)inf(\alpha)=\xiinf(\alpha)+ηinf{\alpha}
(\xi\veeη)sup(\alpha)=\xisup(\alpha)\veeηsup{\alpha}
(\xi\veeη)inf(\alpha)=\xiinf(\alpha)\veeηinf{\alpha}
(\xi\wedgeη)sup(\alpha)=\xisup(\alpha)\wedgeηsup{\alpha}
(\xi\wedgeη)inf(\alpha)=\xiinf(\alpha)\wedgeηinf{\alpha}
Definition: Let
\xi
\Phi
+infty | |
H[\xi]=\int | |
-infty |
S(\Phi(x))dx
S(x)=-tln(t)-(1-t)ln(1-t)
Theorem 1(Dai and Chen): Let
\xi
\Phi
1\Phi | |
H[\xi]=\int | |
0 |
-1(\alpha)ln
\alpha | |
1-\alpha |
d\alpha.
Theorem 2: Let
\xi
η
a
b
H[a\xi+bη]=|a|E[\xi]+|b|E[η].
Theorem 3: Let
\xi
e
\sigma2
H[\xi]\leq | \pi\sigma |
\sqrt{3 |
Theorem 1(Liu, Markov Inequality): Let
\xi
t>0
p>0
M\{|\xi|\geqt\}\leq
E[|\xi|p] | |
tp |
.
Theorem 2 (Liu, Chebyshev Inequality) Let
\xi
V[\xi]
t>0
M\{|\xi-E[\xi]|\geqt\}\leq
V[\xi] | |
t2 |
.
Theorem 3 (Liu, Holder's Inequality) Let
p
q
1/p+1/q=1
\xi
η
E[|\xi|p]<infty
E[|η|q]<infty
E[|\xiη|]\leq\sqrt[p]{E[|\xi|p]}\sqrt[p]{E[η|p]}.
Theorem 4:(Liu [127], Minkowski Inequality) Let
p
p\leq1
\xi
η
E[|\xi|p]<infty
E[|η|q]<infty
\sqrt[p]{E[|\xi+η|p]}\leq\sqrt[p]{E[|\xi|p]}+\sqrt[p]{E[η|p]}.
Definition 1: Suppose that
\xi,\xi1,\xi2,\ldots
(\Gamma,L,M)
\{\xii\}
\xi
Λ
M\{Λ\}=1
\limi\toinfty|\xii(\gamma)-\xi(\gamma)|=0
\gamma\inΛ
\xii\to\xi
Definition 2: Suppose that
\xi,\xi1,\xi2,\ldots
\{\xii\}
\xi
\limi\toinftyM\{|\xii-\xi|\leq\varepsilon\}=0
\varepsilon>0
Definition 3: Suppose that
\xi,\xi1,\xi2,\ldots
\{\xii\}
\xi
\limi\toinftyE[|\xii-\xi|]=0
Definition 4: Suppose that
\Phi,\phi1,\Phi2,\ldots
\xi,\xi1,\xi2,\ldots
\{\xii\}
\xi
\Phii → \Phi
\Phi
Theorem 1: Convergence in Mean
⇒
⇒
\nLeftrightarrow
\nLeftrightarrow
Definition 1: Let
(\Gamma,L,M)
A,B\inL
l{M}\{A\vertB\}=\begin{cases}\displaystyle
l{M | |
\{A\cap |
B\}}{l{M}\{B\}},&\displaystyleif
l{M | |
\{A\cap |
B\}}{l{M}\{B\}}<0.5\ \displaystyle1-
l{M | |
\{A |
c\capB\}}{l{M}\{B\}},&\displaystyleif
l{M | |
\{A |
c\capB\}}{l{M}\{B\}}<0.5\ 0.5,&otherwise\end{cases}
providedthatl{M}\{B\}>0
Theorem 1: Let
(\Gamma,L,M)
M\{B\}>0
(\Gamma,L,M\{·|B\})
Definition 2: Let
\xi
(\Gamma,L,M)
\xi
\xi|B
(\Gamma,L,M\{·|B\})
\xi|B(\gamma)=\xi(\gamma),\forall\gamma\in\Gamma
Definition 3: The conditional uncertainty distribution
\Phi → [0,1]
\xi
\Phi(x|B)=M\{\xi\leqx|B\}
M\{B\}>0
Theorem 2: Let
\xi
\Phi(x)
t
\Phi(t)<1
\xi
\xi>t
\Phi(x\vert(t,+infty))=\begin{cases}0,&if\Phi(x)\le\Phi(t)\ \displaystyle
\Phi(x) | |
1-\Phi(t) |
\land0.5,&if\Phi(t)<\Phi(x)\le(1+\Phi(t))/2\ \displaystyle
\Phi(x)-\Phi(t) | |
1-\Phi(t) |
,&if(1+\Phi(t))/2\le\Phi(x)\end{cases}
Theorem 3: Let
\xi
\Phi(x)
t
\Phi(t)>0
\xi
\xi\leqt
\Phi(x\vert(-infty,t])=\begin{cases}\displaystyle
\Phi(x) | |
\Phi(t) |
,&if\Phi(x)\le\Phi(t)/2\ \displaystyle
\Phi(x)+\Phi(t)-1 | |
\Phi(t) |
\lor0.5,&if\Phi(t)/2\le\Phi(x)<\Phi(t)\ 1,&if\Phi(t)\le\Phi(x)\end{cases}
Definition 4: Let
\xi
\xi
+infty | |
E[\xi|B]=\int | |
0 |
M\{\xi\geq
0M\{\xi\leq | |
r|B\}dr-\int | |
-infty |
r|B\}dr