In quantum information theory, the idea of a typical subspace plays an important role in the proofs of many coding theorems (the most prominent example being Schumacher compression). Its role is analogous to that of the typical set in classical information theory.
\rho
\rho=\sumxpX(x)\vertx\rangle\langle x\vert.
\overline{H}(xn)
H(X)
pX(x)
Xn | |
T | |
\delta |
\equivspan\left\{\left\vertxn\right\rangle :\left\vert\overline{H}(xn)-H(X)\right\vert \leq\delta\right\},
\overline{H}(xn)\equiv-
1 | |
n |
log(
p | |
Xn |
(xn)),
H(X)\equiv-\sumxpX(x)logpX(x).
n | |
\Pi | |
\rho,\delta |
\rho
n | |
\Pi | |
\rho,\delta |
\equiv\sum | |||||||||||||
|
\vert xn\rangle\langlexn\vert,
Xn | |
T | |
\delta |
\delta
Xn | |
T | |
\delta |
\equiv\left\{xn:\left\vert\overline{H}\left(xn\right)-H(X)\right\vert\leq\delta\right\}.
Tr\left\{
n | |
\Pi | |
\rho,\delta |
\rho ⊗ \right\}\geq1-\epsilon,
Tr\left\{
n | |
\Pi | |
\rho,\delta |
\right\}\leq2n\left[,
2-n\left[
n | |
\Pi | |
\rho,\delta |
n | |
\leq\Pi | |
\rho,\delta |
\rho ⊗
n | |
\Pi | |
\rho,\delta |
\leq2-n\left[ H(
n | |
\Pi | |
\rho,\delta |
,
\epsilon,\delta>0
n
Consider an ensemble
\left\{pX(x),\rhox\right\} x\inl{X
\rhox
\rhox=\sumypY|X(y|x)\vertyx\rangle \langleyx\vert.
\rho | |
xn |
xn\equivx1 … xn
\rho | |
xn |
\equiv\rho | |
x1 |
⊗ … ⊗ \rho | |
xn |
.
xn
\overline{H}(yn|xn)
H(Y|X)
pY|X(y|x)pX(x)
Yn|xn | |
T | |
\delta |
\equivspan\left\{\left\vert
y | |
xn |
n\right\rangle:\left\vert\overline{H}(yn|xn) -H(Y|X)\right\vert\leq\delta\right\},
\overline{H}(yn|xn)\equiv-
1 | |
n |
log\left(p | |
Yn|Xn |
(yn|xn)\right),
H(Y|X)\equiv-\sumxpX(x)\sumypY|X(y|x)logpY|X(y|x).
\Pi | |||||||
|
\rho | |
xn |
\Pi | |||||||
|
\equiv\sum | |||||||||||||
|
\vert
n | |
y | |
xn |
\rangle\langle
n | |
y | |
xn |
\vert,
Yn|xn | |
T | |
\delta |
Yn|xn | |
T | |
\delta |
\equiv\left\{yn:\left\vert\overline{H}\left(yn|xn\right)-H(Y|X)\right\vert\leq\delta\right\}.
E | |
Xn |
\left\{Tr\left\{
\Pi | |||||||
|
\rho | |
Xn |
\right\}\right\}\geq1-\epsilon,
Tr\left\{
\Pi | |||||||
|
\right\}\leq2n\left[ H(,
2-n\left[
\Pi | |||||||
|
\leq\Pi | |||||||
|
\rho | |
xn |
\Pi | |||||||
|
\leq2-n\left[
\Pi | |||||||
|
,
\epsilon,\delta>0
n
p | |
Xn |
(xn)