Truncated tetrapentagonal tiling explained

In geometry, the truncated tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1,2 or tr.

Symmetry

There are four small index subgroup constructed from [5,4] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.A radical subgroup is constructed [5*,4], index 10, as [5<sup>+</sup>,4], (5*2) with gyration points removed, becoming orbifold (

), and its direct subgroup [5*,4]+, index 20, becomes orbifold (22222).

See also

References

. H. S. M. Coxeter. The Beauty of Geometry: Twelve Essays. 1999. Dover Publications. 99035678. 0-486-40919-8. Chapter 10: Regular honeycombs in hyperbolic space.

External links