Truncated rhombicuboctahedron explained

bgcolor=#e7dcc3 colspan=2Truncated rhombicuboctahedron
Schläfli symboltrr =

tr\begin{Bmatrix}4\ 3\end{Bmatrix}

Conway notationtaaC
Faces50:
24
8
6+12
Edges144
Vertices96
Symmetry groupOh, [4,3], (*432) order 48
Rotation groupO, [4,3]+, (432), order 24
Dual polyhedronDisdyakis icositetrahedron
Propertiesconvex, zonohedron

The truncated rhombicuboctahedron is a polyhedron, constructed as a truncation of the rhombicuboctahedron. It has 50 faces consisting of 18 octagons, 8 hexagons, and 24 squares. It can fill space with the truncated cube, truncated tetrahedron and triangular prism as a truncated runcic cubic honeycomb.

Other names

Zonohedron

As a zonohedron, it can be constructed with all but 12 octagons as regular polygons. It has two sets of 48 vertices existing on two distances from its center.

It represents the Minkowski sum of a cube, a truncated octahedron, and a rhombic dodecahedron.

Excavated truncated rhombicuboctahedron

bgcolor=#e7dcc3 colspan=2Excavated truncated rhombicuboctahedron
Faces148:
8
24+96+6
8
6
Edges312
Vertices144
Euler characteristic-20
Genus11
Symmetry groupOh, [4,3], (*432) order 48
The excavated truncated rhombicuboctahedron is a toroidal polyhedron, constructed from a truncated rhombicuboctahedron with its 12 irregular octagonal faces removed. It comprises a network of 6 square cupolae, 8 triangular cupolae, and 24 triangular prisms. [1] It has 148 faces (8 triangles, 126 squares, 8 hexagons, and 6 octagons), 312 edges, and 144 vertices. With Euler characteristic χ = f + v - e = -20, its genus (g = (2-χ)/2) is 11.

Without the triangular prisms, the toroidal polyhedron becomes a truncated cuboctahedron.

Related polyhedra

The truncated cuboctahedron is similar, with all regular faces, and 4.6.8 vertex figure.

The triangle and squares of the rhombicuboctahedron can be independently rectified or truncated, creating four permutations of polyhedra. The partially truncated forms can be seen as edge contractions of the truncated form.

The truncated rhombicuboctahedron can be seen in sequence of rectification and truncation operations from the cuboctahedron. A further alternation step leads to the snub rhombicuboctahedron.

See also

References

External links

Notes and References

  1. Web site: Prism Expansions.