There are two degrees of truncations, including a bitruncation.
bgcolor=#e7dcc3 colspan=3 | Truncated 5-cell | ||
---|---|---|---|
bgcolor=#ffffff align=center colspan=3 | Schlegel diagram (tetrahedron cells visible) | ||
Type | Uniform 4-polytope | ||
Schläfli symbol | t0,1 t | ||
Coxeter diagram | |||
Cells | 10 | ||
Faces | 30 | 20 10 | |
Edges | 40 | ||
Vertices | 20 | ||
Vertex figure | Equilateral-triangular pyramid | ||
Symmetry group | A4, [3,3,3], order 120 | ||
Properties | convex, isogonal | ||
Uniform index | 2 3 4 |
The truncated 5-cell may be constructed from the 5-cell by truncating its vertices at 1/3 of its edge length. This transforms the 5 tetrahedral cells into truncated tetrahedra, and introduces 5 new tetrahedral cells positioned near the original vertices.
The truncated tetrahedra are joined to each other at their hexagonal faces, and to the tetrahedra at their triangular faces.
Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.
A4 | k-face | fk | f0 | f1 | f2 | f3 | k-figure | Notes | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A2 | f0 | 20 | 1 | 3 | 3 | 3 | 3 | 1 | A4/A2 = 5!/3 | = 20 | |||
A2A1 | f1 | 2 | 10 | 3 | 0 | 3 | 0 | A4/A2A1 = 5!/3 | /2 = 10 | ||||
A1A1 | 2 | 30 | 1 | 2 | 2 | 1 | A4/A1A1 = 5!/2/2 = 30 | ||||||
A2A1 | t | f2 | 6 | 3 | 3 | 10 | 2 | 0 | A4/A2A1 = 5!/3 | /2 = 10 | |||
A2 | 3 | 0 | 3 | 20 | 1 | 1 | A4/A2 = 5!/3 | = 20 | |||||
A3 | t | f3 | 12 | 6 | 12 | 4 | 4 | 5 | A4/A3 = 5 | /4! = 5 | |||
4 | 0 | 6 | 0 | 4 | 5 |
The truncated tetrahedron-first Schlegel diagram projection of the truncated 5-cell into 3-dimensional space has the following structure:
This layout of cells in projection is analogous to the layout of faces in the face-first projection of the truncated tetrahedron into 2-dimensional space. The truncated 5-cell is the 4-dimensional analogue of the truncated tetrahedron.
The Cartesian coordinates for the vertices of an origin-centered truncated 5-cell having edge length 2 are:
\left(
\left(
\left(
\left(
\left(
\left(
| \left(-\sqrt{2\over5}, \sqrt{2\over3},
\left(-\sqrt{2\over5}, \sqrt{2\over3},
\left(-\sqrt{2\over5}, -\sqrt{6}, 0, 0\right) \left(
\left(
\left(
|
More simply, the vertices of the truncated 5-cell can be constructed on a hyperplane in 5-space as permutations of (0,0,0,1,2) or of (0,1,2,2,2). These coordinates come from positive orthant facets of the truncated pentacross and bitruncated penteract respectively.
The convex hull of the truncated 5-cell and its dual (assuming that they are congruent) is a nonuniform polychoron composed of 60 cells: 10 tetrahedra, 20 octahedra (as triangular antiprisms), 30 tetrahedra (as tetragonal disphenoids), and 40 vertices. Its vertex figure is a hexakis triangular cupola.
bgcolor=#e7dcc3 colspan=3 | Bitruncated 5-cell | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bgcolor=#ffffff align=center colspan=3 | Schlegel diagram with alternate cells hidden. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type | Uniform 4-polytope | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Schläfli symbol | t1,2 2t | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coxeter diagram | or or | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cells | 10 (3.6.6) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Faces | 40 | 20 20 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Edges | 60 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertices | 30 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
bgcolor=#e7dcc3 valign=center | Vertex figure | (v) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
dual polytope | Disphenoidal 30-cell | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Symmetry group | Aut(A4), [[3,3,3]], order 240|-|bgcolor=#e7dcc3|Properties|colspan=2|convex, isogonal, isotoxal, isochoric|-|bgcolor=#e7dcc3|Uniform index|colspan=2|5 6 7|}The bitruncated 5-cell (also called a bitruncated pentachoron, decachoron and 10-cell) is a 4-dimensional polytope, or 4-polytope, composed of 10 cells in the shape of truncated tetrahedra. Topologically, under its highest symmetry, [[3,3,3]], there is only one geometrical form, containing 10 uniform truncated tetrahedra. The hexagons are always regular because of the polychoron's inversion symmetry, of which the regular hexagon is the only such case among ditrigons (an isogonal hexagon with 3-fold symmetry). E. L. Elte identified it in 1912 as a semiregular polytope. Each hexagonal face of the truncated tetrahedra is joined in complementary orientation to the neighboring truncated tetrahedron. Each edge is shared by two hexagons and one triangle. Each vertex is surrounded by 4 truncated tetrahedral cells in a tetragonal disphenoid vertex figure. The bitruncated 5-cell is the intersection of two pentachora in dual configuration. As such, it is also the intersection of a penteract with the hyperplane that bisects the penteract's long diagonal orthogonally. In this sense it is a 4-dimensional analog of the regular octahedron (intersection of regular tetrahedra in dual configuration / tesseract bisection on long diagonal) and the regular hexagon (equilateral triangles / cube). The 5-dimensional analog is the birectified 5-simplex, and the n The bitruncated 5-cell is one of the two non-regular convex uniform 4-polytopes which are cell-transitive. The other is the bitruncated 24-cell, which is composed of 48 truncated cubes. SymmetryThis 4-polytope has a higher extended pentachoric symmetry (2×A4, [[3,3,3]]), doubled to order 240, because the element corresponding to any element of the underlying 5-cell can be exchanged with one of those corresponding to an element of its dual. Alternative names
CoordinatesThe Cartesian coordinates of an origin-centered bitruncated 5-cell having edge length 2 are: More simply, the vertices of the bitruncated 5-cell can be constructed on a hyperplane in 5-space as permutations of (0,0,1,2,2). These represent positive orthant facets of the bitruncated pentacross. Another 5-space construction, centered on the origin are all 20 permutations of (-1,-1,0,1,1).Related polytopesThe bitruncated 5-cell can be seen as the intersection of two regular 5-cells in dual positions. = ∩ . ConfigurationSeen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.
Related regular skew polyhedronThe regular skew polyhedron,, exists in 4-space with 4 hexagonal around each vertex, in a zig-zagging nonplanar vertex figure. These hexagonal faces can be seen on the bitruncated 5-cell, using all 60 edges and 30 vertices. The 20 triangular faces of the bitruncated 5-cell can be seen as removed. The dual regular skew polyhedron,, is similarly related to the square faces of the runcinated 5-cell. Disphenoidal 30-cell
|