In mathematics, the values of the trigonometric functions can be expressed approximately, as in
\cos(\pi/4) ≈ 0.707
\cos(\pi/4)=\sqrt2/2
The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. In the table below, the label "Undefined" represents a ratio
1:0.
infty
Radians | Degrees | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0\circ | 0 | 1 | 0 | 1 | |||||||||||||||||
| 15\circ |
|
| 2-\sqrt3 | 2+\sqrt3 | \sqrt2(\sqrt3-1) | \sqrt2(\sqrt3+1) | |||||||||||||||
| 18\circ |
|
|
| \sqrt{5+2\sqrt5} |
-\sqrt5}}{5} | \sqrt5+1 | |||||||||||||||
| 22.5\circ |
|
| \sqrt2-1 | \sqrt2+1 | \sqrt2\sqrt{2-\sqrt2} | \sqrt2\sqrt{2+\sqrt2} | |||||||||||||||
| 30\circ |
|
|
| \sqrt3 |
| 2 | |||||||||||||||
| 36\circ |
|
| \sqrt{5-2\sqrt5} |
| \sqrt5-1 |
+\sqrt5}}{5} | |||||||||||||||
| 45\circ |
| 1 | \sqrt2 |
For angles outside of this range, trigonometric values can be found by applying reflection and shift identities such as
\begin{alignat}{3} &&\sin(\tfrac{\pi}{2}-\theta)&{}=\cos(\theta),\\[5mu] &&\sin(2\pi+\theta)&{}=\sin(\pi-\theta)&&{}=\sin(\theta), &&\sin(\pi+\theta)&&{}=\sin(-\theta)&&{}=-\sin(\theta),\\[5mu] &&\cos(2\pi+\theta)&{}=\cos(-\theta)&&{}=\cos(\theta), &&\cos(\pi+\theta)&&{}=\cos(\pi-\theta)&&{}=-\cos(\theta). \end{alignat}
A trigonometric number is a number that can be expressed as the sine or cosine of a rational multiple of radians.[1] Since
\sin(x)=\cos(x-\pi/2),
\cos(2\pik/n)
\cos(2\pik/n)+i\sin(2\pik/n)
\left(\cos\left( | 2\pik |
n |
\right)+i\sin\left(
2\pik | |
n |
\right)\right)n=\cos(2\pik)+i\sin(2\pik)=1
Since the root of unity is a root of the polynomial xn − 1, it is algebraic. Since the trigonometric number is the average of the root of unity and its complex conjugate, and algebraic numbers are closed under arithmetic operations, every trigonometric number is algebraic.[1] The minimal polynomials of trigonometric numbers can be explicitly enumerated.[2] In contrast, by the Lindemann–Weierstrass theorem, the sine or cosine of any non-zero algebraic number is always transcendental.[3]
The real part of any root of unity is a trigonometric number. By Niven's theorem, the only rational trigonometric numbers are 0, 1, −1, 1/2, and −1/2.[4]
An angle can be constructed with a compass and straightedge if and only if its sine (or equivalently cosine) can be expressed by a combination of arithmetic operations and square roots applied to integers. Additionally, an angle that is a rational multiple of
\pi
a\pi/b
Thus, for example,
2\pi/15=24\circ
\pi/12=15\circ
\pi/9=20\circ
9=3 ⋅ 3
\pi/7 ≈ 25.714\circ
It results from the above characterisation that an angle of an integer number of degrees is constructible if and only if this number of degrees is a multiple of .
From a reflection identity,
\cos(45\circ)=\sin(90\circ-45\circ)=\sin(45\circ)
\sin(45\circ)2+\cos(45\circ)2=1
2\sin(45\circ)2-1=0
\sin(45\circ)=\cos(45\circ)=1/\sqrt{2}=\sqrt{2}/2
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained. By symmetry, the bisected side is half of the side of the equilateral triangle, so one concludes
\sin(30\circ)=1/2
\sin(60\circ)=\cos(30\circ)=\sqrt{1-(1/2)2}=\sqrt{3}/2
The value of
\sin(18\circ)
\sin(36\circ)=2\sin(18\circ)\cos(18\circ)
\cos(54\circ)=\cos3(18\circ)-3\sin2(18\circ)\cos(18\circ)=\cos(18\circ)(1-4\sin2(18\circ))
2\sin(18\circ)=1-4\sin2(18\circ)
\sin(18\circ)=
\sqrt{5 | |
-1}{4} |
The Pythagorean identity then gives
\cos(18\circ)
The sines and cosines of all other angles between 0 and 90° that are multiples of 3° can be derived from the angles described above and the sum and difference formulas. Specifically,[6]
\begin{align} 3\circ&=18\circ-15\circ,& 24\circ&=54\circ-30\circ,& 51\circ&=60\circ-9\circ,& 78\circ&=60\circ+18\circ,& \\ 6\circ&=36\circ-30\circ,& 27\circ&=45\circ-18\circ,& 57\circ&=30\circ+27\circ,& 81\circ&=45\circ+36\circ,& \\ 9\circ&=45\circ-36\circ,& 33\circ&=60\circ-27\circ,& 63\circ&=45\circ+18\circ,& 84\circ&=54\circ+30\circ,& \\ 12\circ&=30\circ-18\circ,& 39\circ&=30\circ+9\circ,& 66\circ&=36\circ+30\circ,& 87\circ&=60\circ+27\circ.& \\ 15\circ&=45\circ-30\circ,& 42\circ&=60\circ-18\circ,& 69\circ&=60\circ+9\circ,& \\ 21\circ&=30\circ-9\circ,& 48\circ&=30\circ+18\circ,& 75\circ&=45\circ+30\circ,& \end{align}
For example, since
24\circ=60\circ-36\circ
\begin{align}\cos(24\circ)&=\cos(60\circ)\cos(36\circ)+\sin(60\circ)\sin(36\circ)\\ &=
1 | |
2 |
\sqrt{5 | |||
|
If the denominator, b, is multiplied by additional factors of 2, the sine and cosine can be derived with the half-angle formulas. For example, 22.5° (/8 rad) is half of 45°, so its sine and cosine are:[7]
\sin(22.5\circ)=\sqrt{
1-\cos(45\circ) | |
2 |
\cos(22.5\circ) =\sqrt{
1+\cos(45\circ) | |
2 |
Repeated application of the half-angle formulas leads to nested radicals, specifically nested square roots of 2 of the form
\sqrt{2\pm … }
\beta/2n
\beta
bk\in[-2,2]
bi
i<k
b1 ≠ 0
13\pi | |
32 |
=\pi\left(
1 | - | |
2 |
1 | + | |
4 |
1 | + | |
8 |
1 | - | |
16 |
1 | |
32 |
\right)
(b1,b2,b3,b4)=(1,-1,1,-1)
See main article: Heptadecagon.
Since 17 is a Fermat prime, a regular 17-gon is constructible, which means that the sines and cosines of angles such as
2\pi/17
\cos\left( | 2\pi |
17 |
\right)=
-1+\sqrt{17 | |
+\sqrt{34-2\sqrt{17}} |
+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}{16}
The sines and cosines of other constructible angles of the form
k2n\pi | |
17 |
k,n
As discussed in, only certain angles that are rational multiples of
\pi
\pi/180=\pi/(22 ⋅ 32 ⋅ 5)
\sin(1\circ)
Using the triple-angle identity, we can identify
\sin(1\circ)
\sin(3\circ)=-4x3+3x
\sin(1\circ)
\sin(59\circ)
-\sin(61\circ)
\sin(3\circ)
\sin(1\circ)
Alternatively, by De Moivre's formula:
\begin{align} (\cos(1\circ)+i\sin(1\circ))3&=\cos(3\circ)+i\sin(3\circ),\\[4mu] (\cos(1\circ)-i\sin(1\circ))3&=\cos(3\circ)-i\sin(3\circ). \end{align}
Taking cube roots and adding or subtracting the equations, we have:[12]
\begin{align} \cos(1\circ)&=
1 | |
2 |
\left(\sqrt[3]{\cos(3\circ)+i\sin(3\circ)} +\sqrt[3]{\cos(3\circ)-i\sin(3\circ)}\right), \\[5mu] \sin(1\circ)&=
1 | |
2i |
\left(\sqrt[3]{\cos(3\circ)+i\sin(3\circ)} -\sqrt[3]{\cos(3\circ)-i\sin(3\circ)}\right). \end{align}