Transaldolase Explained

Transaldolase
Ec Number:2.2.1.2
Cas Number:9014-46-4
Go Code:0004801
transaldolase 1
Hgncid:11559
Symbol:TALDO1
Entrezgene:6888
Omim:602063
Refseq:NM_006755
Uniprot:P37837
Ecnumber:2.2.1.2
Chromosome:11
Arm:p
Band:15.5-15.4
transaldolase B
Symbol:talB
Entrezgene:4199095
Refseq:NC_008245.1
Uniprot:P0A870
Pdb:1onr
Ecnumber:2.2.1.2
Arm:p
Band:15.5?
Locussupplementarydata:-15.4?

Transaldolase is an enzyme of the non-oxidative phase of the pentose phosphate pathway. In humans, transaldolase is encoded by the TALDO1 gene.[1] [2]

The following chemical reaction is catalyzed by transaldolase:

\rightleftharpoons

erythrose 4-phosphate + fructose 6-phosphate

Clinical significance

The pentose phosphate pathway has two metabolic functions: (1) generation of nicotinamide adenine dinucleotide phosphate (reduced NADPH), for reductive biosynthesis, and (2) formation of ribose, which is an essential component of ATP, DNA, and RNA. Transaldolase links the pentose phosphate pathway to glycolysis. In patients with deficiency of transaldolase, there's an accumulation of erythritol (from erythrose 4-phosphate), D-arabitol, and ribitol.[3]

The deletion in 3 base pairs in the TALDO1 gene results in the absence of serine at position 171 of the transaldolase protein, which is part of a highly conserved region, suggesting that the mutation causes the transaldolase deficiency that is found in erythrocytes and lymphoblasts.[4] The deletion of this amino acid can lead to liver cirrhosis and hepatosplenomegaly (enlarged spleen and liver) during early infancy. Transaldolase is also a target of autoimmunity in patients with multiple sclerosis.[5]

Structure

Transaldolase is a single domain composed of 337 amino acids. The core structure is an α/β barrel, similar to other class I aldolases, made up of eight parallel β-sheets and seven α-helices. There are also seven additional α-helices that are not part of the barrel. Hydrophobic amino acids are located between the β-sheets in the barrel and the surrounding α-helices to contribute to packing, such as the area containing Leu-168, Phe-170, Phe-189, Gly-311, and Phe-315. In the crystal, human transaldolase forms a dimer, with the two subunits connected by 18 residues in each subunit. See mechanism to the left for details.

The active site, located in the center of the barrel, contains three key residues: lysine-142, glutamate-106, and aspartate-27. The lysine holds the sugar in place while the glutamate and aspartate act as proton donors and acceptors.[6]

Mechanism of catalysis

The residue of lysine-142 in the active site of transaldolase forms a Schiff base with the keto group in sedoheptulose-7-phosphate after deprotonation by another active site residue, glutamate-106. The reaction mechanism is similar to the reverse reaction catalyzed by aldolase: The bond joining carbons 3 and 4 is broken, leaving dihydroxyacetone joined to the enzyme via a Schiff base. This cleavage reaction generates the unusual aldose sugar erythrose-4-phosphate. Then transaldolase catalyzes the condensation of glyceraldehyde-3-phosphate with the Schiff base of dihydroxyacetone, yielding enzyme-bound fructose 6-phosphate. Hydrolysis of the Schiff base liberates free fructose 6-phosphate, one of the products of the pentose phosphate pathway.

See also

Notes and References

  1. Web site: Entrez Gene: transaldolase 1.
  2. Banki K, Eddy RL, Shows TB, Halladay DL, Bullrich F, Croce CM, Jurecic V, Baldini A, Perl A . The human transaldolase gene (TALDO1) is located on chromosome 11 at p15.4-p15.5 . Genomics . 45 . 1 . 233–8 . October 1997 . 9339383 . 10.1006/geno.1997.4932 .
  3. Perl A . The pathogenesis of transaldolase deficiency . IUBMB Life . 59 . 6 . 365–73 . June 2007 . 17613166 . 10.1080/15216540701387188 . 10428599 . free .
  4. Verhoeven NM, Huck JH, Roos B, Struys EA, Salomons GS, Douwes AC, van der Knaap MS, Jakobs C . Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway . Am. J. Hum. Genet. . 68 . 5 . 1086–92 . May 2001 . 11283793 . 1226089 . 10.1086/320108 .
  5. Book: Niland B, Perl A . Autoimmunity . Evaluation of autoimmunity to transaldolase in multiple sclerosis . Methods Mol. Med. . 102 . 155–71 . 2004 . 15286385 . 10.1385/1-59259-805-6:155 . 978-1-59259-805-2 .
  6. Thorell S, Gergely P, Banki K, Perl A, Schneider G . The three-dimensional structure of human transaldolase . FEBS Lett. . 475 . 3 . 205–8 . June 2000 . 10869557 . 10.1016/S0014-5793(00)01658-6 . 33590067 .