Transactivation domain explained

The transactivation domain or trans-activating domain (TAD) is a transcription factor scaffold domain which contains binding sites for other proteins such as transcription coregulators. These binding sites are frequently referred to as activation functions (AFs).[1] TADs are named after their amino acid composition. These amino acids are either essential for the activity or simply the most abundant in the TAD. Transactivation by the Gal4 transcription factor is mediated by acidic amino acids, whereas hydrophobic residues in Gcn4 play a similar role. Hence, the TADs in Gal4 and Gcn4 are referred to as acidic or hydrophobic, respectively.[2] [3] [4] [5] [6] [7] [8] [9]

In general we can distinguish four classes of TADs:[10]

Alternatively, since similar amino acid compositions does not necessarily mean similar activation pathways, TADs can be grouped by the process they stimulate, either initiation or elongation.

Acidic/9aaTAD

Nine-amino-acid transactivation domain (9aaTAD) defines a domain common to a large superfamily of eukaryotic transcription factors represented by Gal4, Oaf1, Leu3, Rtg3, Pho4, Gln3, Gcn4 in yeast, and by p53, NFAT, NF-κB and VP16 in mammals. The definition largely overlaps with an "acidic" family definition. A 9aaTAD prediction tool is available.[15] 9aaTADs tend to have an associated 3-aa hydrophobic (usually Leu-rich) region immediately to its N-terminal.

9aaTAD transcription factors p53, VP16, MLL, E2A, HSF1, NF-IL6, NFAT1 and NF-κB interact directly with the general coactivators TAF9 and CBP/p300.[15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] p53 9aaTADs interact with TAF9, GCN5 and with multiple domains of CBP/p300 (KIX, TAZ1,TAZ2 and IBiD).[28] [29] [30] [31] [32]

The KIX domain of general coactivators Med15(Gal11) interacts with 9aaTAD transcription factors Gal4, Pdr1, Oaf1, Gcn4, VP16, Pho4, Msn2, Ino2 and P201. Positions 1, 3-4, and 7 of the 9aaTAD are the main residues that interact with KIX.[33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] Interactions of Gal4, Pdr1 and Gcn4 with Taf9 have been observed.[49] [50] 9aaTAD is a common transactivation domain which recruits multiple general coactivators TAF9, MED15, CBP/p300 and GCN5.[15]

Example 9aaTADs and KIX interactions[51]
Source 9aaTADPeptide-KIX interaction (NMR)
p53 TAD1
p53 TAD2
MLL
E2A
Rtg3E2A homolog
CREB
CREBaB6CREB-mutant binding to KIX
Gli3TAD homology to CREB/KIX
Gal4Pdr1 and Oaf1 homolog
Oaf1
Pip2Oafl homolog
Pdr1
Pdr3Pdr1 homolog

Glutamine-rich

Glutamine (Q)-rich TADs are found in POU2F1 (Oct1), POU2F2 (Oct2), and Sp1 (see also Sp/KLF family).[12] Although such is not the case for every Q-rich TAD, Sp1 is shown to interact with TAF4 (TAFII 130), a part of the TFIID assembly.[52] [53]

See also

External links

Notes and References

  1. Wärnmark A, Treuter E, Wright AP, Gustafsson JA . Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation . Molecular Endocrinology . 17 . 10 . 1901–9 . Oct 2003 . 12893880 . 10.1210/me.2002-0384 . free .
  2. Ma J, Ptashne M . A new class of yeast transcriptional activators . Cell . 51 . 1 . 113–9 . Oct 1987 . 3115591 . 10.1016/0092-8674(87)90015-8 . free .
  3. Sadowski I, Ma J, Triezenberg S, Ptashne M . GAL4-VP16 is an unusually potent transcriptional activator . Nature . 335 . 6190 . 563–4 . Oct 1988 . 3047590 . 10.1038/335563a0 . 1988Natur.335..563S . 4276393 .
  4. Sullivan SM, Horn PJ, Olson VA, Koop AH, Niu W, Ebright RH, Triezenberg SJ . Mutational analysis of a transcriptional activation region of the VP16 protein of herpes simplex virus . Nucleic Acids Research . 26 . 19 . 4487–96 . Oct 1998 . 9742254 . 147869 . 10.1093/nar/26.19.4487 .
  5. Gill G, Ptashne M . Mutants of GAL4 protein altered in an activation function . Cell . 51 . 1 . 121–6 . Oct 1987 . 3115592 . 10.1016/0092-8674(87)90016-X . free .
  6. Hope IA, Mahadevan S, Struhl K . Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein . Nature . 333 . 6174 . 635–40 . Jun 1988 . 3287180 . 10.1038/333635a0 . 1988Natur.333..635H . 2635634 .
  7. Hope IA, Struhl K . Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast . Cell . 46 . 6 . 885–94 . Sep 1986 . 3530496 . 10.1016/0092-8674(86)90070-X . 40730692 .
  8. Drysdale CM, Dueñas E, Jackson BM, Reusser U, Braus GH, Hinnebusch AG . The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids . Molecular and Cellular Biology . 15 . 3 . 1220–33 . Mar 1995 . 7862116 . 230345 . 10.1128/mcb.15.3.1220.
  9. Regier JL, Shen F, Triezenberg SJ . Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator . Proceedings of the National Academy of Sciences of the United States of America . 90 . 3 . 883–7 . Feb 1993 . 8381535 . 45774 . 10.1073/pnas.90.3.883 . 1993PNAS...90..883R . free .
  10. Mitchell PJ, Tjian R . Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins . Science . 245 . 4916 . 371–8 . July 1989 . 2667136 . 10.1126/science.2667136 . 1989Sci...245..371M .
  11. Sadowski I, Ma J, Triezenberg S, Ptashne M . GAL4-VP16 is an unusually potent transcriptional activator . Nature . 335 . 6190 . 563–4 . October 1988 . 3047590 . 10.1038/335563a0 . 1988Natur.335..563S . 4276393 .
  12. Courey AJ, Holtzman DA, Jackson SP, Tjian R . Synergistic activation by the glutamine-rich domains of human transcription factor Sp1 . Cell . 59 . 5 . 827–36 . December 1989 . 2512012 . 10.1016/0092-8674(89)90606-5 . 2910480 .
  13. Mermod N, O'Neill EA, Kelly TJ, Tjian R . The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain . Cell . 58 . 4 . 741–53 . August 1989 . 2504497 . 10.1016/0092-8674(89)90108-6 . 22817940 .
  14. Attardi LD, Tjian R . Drosophila tissue-specific transcription factor NTF-1 contains a novel isoleucine-rich activation motif . Genes & Development . 7 . 7B . 1341–53 . July 1993 . 8330738 . 10.1101/gad.7.7b.1341 . free .
  15. Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M . Nine-amino-acid transactivation domain: establishment and prediction utilities . Genomics . 89 . 6 . 756–68 . Jun 2007 . 17467953 . 10.1016/j.ygeno.2007.02.003 .
  16. Uesugi M, Verdine GL . The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2 . Proceedings of the National Academy of Sciences of the United States of America . 96 . 26 . 14801–6 . Dec 1999 . 10611293 . 24728 . 10.1073/pnas.96.26.14801 . 1999PNAS...9614801U . free .
  17. Uesugi M, Nyanguile O, Lu H, Levine AJ, Verdine GL . Induced alpha helix in the VP16 activation domain upon binding to a human TAF . Science . 277 . 5330 . 1310–3 . Aug 1997 . 9271577 . 10.1126/science.277.5330.1310 .
  18. Choi Y, Asada S, Uesugi M . Divergent hTAFII31-binding motifs hidden in activation domains . The Journal of Biological Chemistry . 275 . 21 . 15912–6 . May 2000 . 10821850 . 10.1074/jbc.275.21.15912 . free .
  19. Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE . Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP . Biochemistry . 48 . 10 . 2115–24 . Mar 2009 . 19220000 . 2765525 . 10.1021/bi802055v .
  20. Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE. Jane Dyson . Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain . The Journal of Biological Chemistry . 277 . 45 . 43168–74 . Nov 2002 . 12205094 . 10.1074/jbc.M207660200 . free . 10.1.1.615.9401 .
  21. Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE . Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions . Cell . 91 . 6 . 741–52 . Dec 1997 . 9413984 . 10.1016/S0092-8674(00)80463-8 . 17268267 . free .
  22. Zor T, Mayr BM, Dyson HJ, Montminy MR, Wright PE . Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators . The Journal of Biological Chemistry . 277 . 44 . 42241–8 . Nov 2002 . 12196545 . 10.1074/jbc.M207361200 . free .
  23. Brüschweiler S, Schanda P, Kloiber K, Brutscher B, Kontaxis G, Konrat R, Tollinger M . Direct observation of the dynamic process underlying allosteric signal transmission . Journal of the American Chemical Society . 131 . 8 . 3063–8 . Mar 2009 . 19203263 . 10.1021/ja809947w .
  24. Liu GH, Qu J, Shen X . NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK . Biochimica et Biophysica Acta (BBA) - Molecular Cell Research . 1783 . 5 . 713–27 . May 2008 . 18241676 . 10.1016/j.bbamcr.2008.01.002 .
  25. Bayly R, Murase T, Hyndman BD, Savage R, Nurmohamed S, Munro K, Casselman R, Smith SP, LeBrun DP . Critical role for a single leucine residue in leukemia induction by E2A-PBX1 . Molecular and Cellular Biology . 26 . 17 . 6442–52 . Sep 2006 . 16914730 . 1592826 . 10.1128/MCB.02025-05 .
  26. García-Rodríguez C, Rao A . Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP) . The Journal of Experimental Medicine . 187 . 12 . 2031–6 . Jun 1998 . 9625762 . 2212364 . 10.1084/jem.187.12.2031 .
  27. Mink S, Haenig B, Klempnauer KH . Interaction and functional collaboration of p300 and C/EBPbeta . Molecular and Cellular Biology . 17 . 11 . 6609–17 . Nov 1997 . 9343424 . 232514 . 10.1128/mcb.17.11.6609.
  28. Teufel DP, Freund SM, Bycroft M, Fersht AR . Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53 . Proceedings of the National Academy of Sciences of the United States of America . 104 . 17 . 7009–14 . Apr 2007 . 17438265 . 1855428 . 10.1073/pnas.0702010104 . 2007PNAS..104.7009T . free .
  29. Teufel DP, Bycroft M, Fersht AR . Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2 . Oncogene . 28 . 20 . 2112–8 . May 2009 . 19363523 . 2685776 . 10.1038/onc.2009.71 .
  30. Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Bai Y . Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation . Structure . 17 . 2 . 202–10 . Feb 2009 . 19217391 . 2705179 . 10.1016/j.str.2008.12.009 .
  31. Ferreon JC, Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE . Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2 . Proceedings of the National Academy of Sciences of the United States of America . 106 . 16 . 6591–6 . Apr 2009 . 19357310 . 2672497 . 10.1073/pnas.0811023106 . 2009PNAS..106.6591F . free .
  32. Gamper AM, Roeder RG . Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage . Molecular and Cellular Biology . 28 . 8 . 2517–27 . Apr 2008 . 18250150 . 2293101 . 10.1128/MCB.01461-07 .
  33. Fukasawa T, Fukuma M, Yano K, Sakurai H . A genome-wide analysis of transcriptional effect of Gal11 in Saccharomyces cerevisiae: an application of "mini-array hybridization technique" . DNA Research . 8 . 1 . 23–31 . Feb 2001 . 11258797 . 10.1093/dnares/8.1.23 . free .
  34. Badi L, Barberis A . Proteins that genetically interact with the Saccharomyces cerevisiae transcription factor Gal11p emphasize its role in the initiation-elongation transition . Molecular Genetics and Genomics . 265 . 6 . 1076–86 . Aug 2001 . 11523780 . 10.1007/s004380100505 . 19287634 .
  35. Kim YJ, Björklund S, Li Y, Sayre MH, Kornberg RD . A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II . Cell . 77 . 4 . 599–608 . May 1994 . 8187178 . 10.1016/0092-8674(94)90221-6 . 5002125 .
  36. Suzuki Y, Nogi Y, Abe A, Fukasawa T . GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae . Molecular and Cellular Biology . 8 . 11 . 4991–9 . Nov 1988 . 3062377 . 365593 . 10.1128/mcb.8.11.4991.
  37. Fassler JS, Winston F . The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription . Molecular and Cellular Biology . 9 . 12 . 5602–9 . Dec 1989 . 2685570 . 363730 . 10.1128/mcb.9.12.5602.
  38. Park JM, Kim HS, Han SJ, Hwang MS, Lee YC, Kim YJ . In vivo requirement of activator-specific binding targets of mediator . Molecular and Cellular Biology . 20 . 23 . 8709–19 . Dec 2000 . 11073972 . 86488 . 10.1128/mcb.20.23.8709-8719.2000.
  39. Lu Z, Ansari AZ, Lu X, Ogirala A, Ptashne M . A target essential for the activity of a nonacidic yeast transcriptional activator . Proceedings of the National Academy of Sciences of the United States of America . 99 . 13 . 8591–6 . Jun 2002 . 12084920 . 124323 . 10.1073/pnas.092263499 . 2002PNAS...99.8591L . free .
  40. Swanson MJ, Qiu H, Sumibcay L, Krueger A, Kim SJ, Natarajan K, Yoon S, Hinnebusch AG . A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo . Molecular and Cellular Biology . 23 . 8 . 2800–20 . Apr 2003 . 12665580 . 152555 . 10.1128/MCB.23.8.2800-2820.2003 .
  41. Bryant GO, Ptashne M . Independent recruitment in vivo by Gal4 of two complexes required for transcription . Molecular Cell . 11 . 5 . 1301–9 . May 2003 . 12769853 . 10.1016/S1097-2765(03)00144-8 . free .
  42. Fishburn J, Mohibullah N, Hahn S . Function of a eukaryotic transcription activator during the transcription cycle . Molecular Cell . 18 . 3 . 369–78 . Apr 2005 . 15866178 . 10.1016/j.molcel.2005.03.029 . free .
  43. Lim MK, Tang V, Le Saux A, Schüller J, Bongards C, Lehming N . Gal11p dosage-compensates transcriptional activator deletions via Taf14p . Journal of Molecular Biology . 374 . 1 . 9–23 . Nov 2007 . 17919657 . 10.1016/j.jmb.2007.09.013 .
  44. Lallet S, Garreau H, Garmendia-Torres C, Szestakowska D, Boy-Marcotte E, Quevillon-Chéruel S, Jacquet M . Role of Gal11, a component of the RNA polymerase II mediator in stress-induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae . Molecular Microbiology . 62 . 2 . 438–52 . Oct 2006 . 17020582 . 10.1111/j.1365-2958.2006.05363.x .
  45. Dietz M, Heyken WT, Hoppen J, Geburtig S, Schüller HJ . TFIIB and subunits of the SAGA complex are involved in transcriptional activation of phospholipid biosynthetic genes by the regulatory protein Ino2 in the yeast Saccharomyces cerevisiae . Molecular Microbiology . 48 . 4 . 1119–30 . May 2003 . 12753200 . 10.1046/j.1365-2958.2003.03501.x . free .
  46. Mizuno T, Harashima S . Gal11 is a general activator of basal transcription, whose activity is regulated by the general repressor Sin4 in yeast . Molecular Genetics and Genomics . 269 . 1 . 68–77 . Apr 2003 . 12715155 . 10.1007/s00438-003-0810-x . 882139 .
  47. Thakur JK, Arthanari H, Yang F, Pan SJ, Fan X, Breger J, Frueh DP, Gulshan K, Li DK, Mylonakis E, Struhl K, Moye-Rowley WS, Cormack BP, Wagner G, Näär AM . A nuclear receptor-like pathway regulating multidrug resistance in fungi . Nature . 452 . 7187 . 604–9 . Apr 2008 . 18385733 . 10.1038/nature06836 . 2008Natur.452..604T . 205212715 .
  48. Thakur JK, Arthanari H, Yang F, Chau KH, Wagner G, Näär AM . Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p . The Journal of Biological Chemistry . 284 . 7 . 4422–8 . Feb 2009 . 19056732 . 10.1074/jbc.M808263200 . 3837390 . free .
  49. Klein J, Nolden M, Sanders SL, Kirchner J, Weil PA, Melcher K . Use of a genetically introduced cross-linker to identify interaction sites of acidic activators within native transcription factor IID and SAGA . The Journal of Biological Chemistry . 278 . 9 . 6779–86 . Feb 2003 . 12501245 . 10.1074/jbc.M212514200 . free .
  50. Milgrom E, West RW, Gao C, Shen WC . TFIID and Spt-Ada-Gcn5-acetyltransferase functions probed by genome-wide synthetic genetic array analysis using a Saccharomyces cerevisiae taf9-ts allele . Genetics . 171 . 3 . 959–73 . Nov 2005 . 16118188 . 1456853 . 10.1534/genetics.105.046557 .
  51. Piskacek M, Havelka M, Rezacova M, Knight A . The 9aaTAD Transactivation Domains: From Gal4 to p53 . PLOS ONE . 11 . 9 . e0162842 . 12 September 2016 . 27618436 . 10.1371/journal.pone.0162842 . 5019370 . 2016PLoSO..1162842P . free .
  52. Book: Frietze . Seth . Farnham . Peggy J. . vanc . A Handbook of Transcription Factors. 52 . 10.1007/978-90-481-9069-0_12 . 261–277 . Transcription Factor Effector Domains. 14 April 2011. 21557087 . 4151296. Subcellular Biochemistry . 978-90-481-9068-3 .
  53. Hibino E, Inoue R, Sugiyama M, Kuwahara J, Matsuzaki K, Hoshino M . Interaction between intrinsically disordered regions in transcription factors Sp1 and TAF4 . Protein Science . 25 . 11 . 2006–2017 . November 2016 . 27515574 . 5079245 . 10.1002/pro.3013 .