A torsion spring is a spring that works by twisting its end along its axis; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional to the amount (angle) it is twisted. There are various types:
Torsion bars and torsion fibers do work by torsion. However, the terminology can be confusing because in helical torsion spring (including clock spring), the forces acting on the wire are actually bending stresses, not torsional (shear) stresses. A helical torsion spring actually works by torsion when it is bent (not twisted).We will use the word "torsion" in the following for a torsion spring according to the definition given above, whether the material it is made of actually works by torsion or by bending.
As long as they are not twisted beyond their elastic limit, torsion springs obey an angular form of Hooke's law:
\tau=-\kappa\theta
where
\tau
\theta
\kappa
The torsion constant may be calculated from the geometry and various material properties. It is analogous to the spring constant of a linear spring. The negative sign indicates that the direction of the torque is opposite to the direction of twist.
The energy U, in joules, stored in a torsion spring is:[2]
U=
1 | |
2 |
\kappa\theta2
Some familiar examples of uses are the strong, helical torsion springs that operate clothespins and traditional spring-loaded-bar type mousetraps. Other uses are in the large, coiled torsion springs used to counterbalance the weight of garage doors, and a similar system is used to assist in opening the trunk (boot) cover on some sedans. Small, coiled torsion springs are often used to operate pop-up doors found on small consumer goods like digital cameras and compact disc players. Other more specific uses:
The torsion balance, also called torsion pendulum, is a scientific apparatus for measuring very weak forces, usually credited to Charles-Augustin de Coulomb, who invented it in 1777, but independently invented by John Michell sometime before 1783. Its most well-known uses were by Coulomb to measure the electrostatic force between charges to establish Coulomb's Law, and by Henry Cavendish in 1798 in the Cavendish experiment to measure the gravitational force between two masses to calculate the density of the Earth, leading later to a value for the gravitational constant.
The torsion balance consists of a bar suspended from its middle by a thin fiber. The fiber acts as a very weak torsion spring. If an unknown force is applied at right angles to the ends of the bar, the bar will rotate, twisting the fiber, until it reaches an equilibrium where the twisting force or torque of the fiber balances the applied force. Then the magnitude of the force is proportional to the angle of the bar. The sensitivity of the instrument comes from the weak spring constant of the fiber, so a very weak force causes a large rotation of the bar.
In Coulomb's experiment, the torsion balance was an insulating rod with a metal-coated ball attached to one end, suspended by a silk thread. The ball was charged with a known charge of static electricity, and a second charged ball of the same polarity was brought near it. The two charged balls repelled one another, twisting the fiber through a certain angle, which could be read from a scale on the instrument. By knowing how much force it took to twist the fiber through a given angle, Coulomb was able to calculate the force between the balls. Determining the force for different charges and different separations between the balls, he showed that it followed an inverse-square proportionality law, now known as Coulomb's law.
To measure the unknown force, the spring constant of the torsion fiber must first be known. This is difficult to measure directly because of the smallness of the force. Cavendish accomplished this by a method widely used since: measuring the resonant vibration period of the balance. If the free balance is twisted and released, it will oscillate slowly clockwise and counterclockwise as a harmonic oscillator, at a frequency that depends on the moment of inertia of the beam and the elasticity of the fiber. Since the inertia of the beam can be found from its mass, the spring constant can be calculated.
Coulomb first developed the theory of torsion fibers and the torsion balance in his 1785 memoir, Recherches theoriques et experimentales sur la force de torsion et sur l'elasticite des fils de metal &c. This led to its use in other scientific instruments, such as galvanometers, and the Nichols radiometer which measured the radiation pressure of light. In the early 1900s gravitational torsion balances were used in petroleum prospecting. Today torsion balances are still used in physics experiments. In 1987, gravity researcher A. H. Cook wrote:
The most important advance in experiments on gravitation and other delicate measurements was the introduction of the torsion balance by Michell and its use by Cavendish. It has been the basis of all the most significant experiments on gravitation ever since.In the Eötvös experiment, a torsion balance was used to prove the equivalence principle - the idea that inertial mass and gravitational mass are one and the same.
Term | Unit | Definition | |
---|---|---|---|
\theta | rad | Angle of deflection from rest position | |
I | kg m2 | Moment of inertia | |
C | joule s rad−1 | Angular damping constant | |
\kappa | N m rad−1 | Torsion spring constant | |
\tau | Nm | Drive torque | |
fn | Hz | Undamped (or natural) resonant frequency | |
Tn | s | Undamped (or natural) period of oscillation | |
\omegan |
| Undamped resonant frequency in radians | |
f | Hz | Damped resonant frequency | |
\omega |
| Damped resonant frequency in radians | |
\alpha |
| Reciprocal of damping time constant | |
\phi | rad | Phase angle of oscillation | |
L | m | Distance from axis to where force is applied |
I | d2\theta |
dt2 |
+C
d\theta | |
dt |
+\kappa\theta=\tau(t)
If the damping is small,
C\ll\sqrt{\kappaI}
fn=
\omegan | |
2\pi |
=
1 | \sqrt{ | |
2\pi |
\kappa | |
I |
Therefore, the period is represented by:
Tn=
1 | |
fn |
=
2\pi | |
\omegan |
=2\pi\sqrt{
I | |
\kappa |
The general solution in the case of no drive force (
\tau=0
\theta=Ae-\alpha\cos{(\omegat+\phi)}
where:
\alpha=C/2I
\omega=
2 | |
\sqrt{\omega | |
n |
-\alpha2}=\sqrt{\kappa/I-(C/2I)2}
The balance wheel of a mechanical watch is a harmonic oscillator whose resonant frequency
fn
I
\kappa
In a torsion balance the drive torque is constant and equal to the unknown force to be measured
F
L
\tau(t)=FL
\theta=FL/\kappa
To determine
F
\kappa
\kappa=(2\pi
2 | |
f | |
n) |
I
In measuring instruments, such as the D'Arsonval ammeter movement, it is often desired that the oscillatory motion die out quickly so the steady state result can be read off. This is accomplished by adding damping to the system, often by attaching a vane that rotates in a fluid such as air or water (this is why magnetic compasses are filled with fluid). The value of damping that causes the oscillatory motion to settle quickest is called the critical damping
Cc
Cc=2\sqrt{\kappaI}