Topological recursion explained
In mathematics, topological recursion is a recursive definition of invariants of spectral curves.It has applications in enumerative geometry, random matrix theory, mathematical physics, string theory, knot theory.
Introduction
The topological recursion is a construction in algebraic geometry.[1] It takes as initial data a spectral curve: the data of
\left(\Sigma,\Sigma0,x,\omega0,1,\omega0,2\right)
, where:
is a covering of
Riemann surfaces with ramification points;
is a
meromorphic differential 1-form on
, regular at the
ramification points;
is a symmetric
meromorphic bilinear
differential form on
having a double pole on the diagonal and no residue.
The topological recursion is then a recursive definition of infinite sequences of symmetric meromorphic n-forms
on
, with poles at ramification points only, for integers g≥0 such that 2g-2+n>0. The definition is a recursion on the integer 2g-2+n.
In many applications, the n-form
is interpreted as a
generating function that measures a set of surfaces of
genus g and with n boundaries. The recursion is on 2g-2+n the
Euler characteristics, whence the name "topological recursion".
Origin
The topological recursion was first discovered in random matrices. One main goal of random matrix theory, is to find the large size asymptotic expansion of n-point correlation functions, and in some suitable cases, the asymptotic expansion takes the form of a power series. The n-form
is then the g
th coefficient in the asymptotic expansion of the n-point correlation function. It was found
[2] [3] [4] that the coefficients
always obey a same recursion on 2g-2+n. The idea to consider this universal recursion relation beyond random matrix theory, and to promote it as a definition of algebraic curves invariants, occurred in Eynard-Orantin 2007 who studied the main properties of those invariants.
An important application of topological recursion was to Gromov–Witten invariants. Marino and BKMP[5] conjectured that Gromov–Witten invariants of a toric Calabi–Yau 3-fold
are the TR invariants of a spectral curve that is the mirror of
.
Since then, topological recursion has generated a lot of activity in particular in enumerative geometry.The link to Givental formalism and Frobenius manifolds has been established.[6]
Definition
(Case of simple branch points. For higher order branchpoints, see the section Higher order ramifications below)
and
:
where
is called the recursion kernel:
K(z1,z2,z3)=
| |
\omega0,1(z2)-\omega0,1(z3) |
and
is the local Galois involution near a branch point
, it is such that
.The primed sum
means excluding the two terms
and
.
and
:
Fg=\omegag,0=
\suma=branchpoints\operatorname{Res}z\toF0,1(z)\omegag,1(z)
with
any antiderivative of
.
and
is more involved and can be found in the original article of Eynard-Orantin.
Main properties
is a symmetric
-form on
.
is meromorphic, it has poles only at branchpoints, with vanishing residues.
is homogeneous of degree
. Under the change
, we have
\omegag,n\toλ2-2g-n\omegag,n
.
\suma=branchpoints\operatorname{Res}z\toF0,1(z) \omegag,n+1(z1,...,zn,z)=(2g-2+n)\omegag,n(z1,...,zn)
where
.
- Loop equations: The following forms have no poles at branchpoints
\sum\{z ≠ \subsetx-1(x)}
(\omegag,n+1(z,z',z2,...,zn)
+
{I1\uplusI2=\{z2,...,zn\}}}
(z,I1)\omega
(z',I2)
)
where the sum has no prime, i.e. no term excluded.
satisfy deformation equations
- Limits: given a family of spectral curves
, whose limit as
is a singular curve, resolved by rescaling by a power of
, then
\limt\tot(2-2g-n)\mu\omegag,n(lSt)=\omegag,n(\limt\tot\mulSt)
.
- Symplectic invariance: In the case where
is a compact algebraic curve with a marking of a symplectic basis of cycles,
is meromorphic and
is meromorphic and
is the fundamental second kind differential normalized on the marking, then the spectral curve
and
\tilde{lS}=(\Sigma,C,y,-xdy,B)
, have the same
shifted by some terms.
- Modular properties: In the case where
is a compact algebraic curve with a marking of a symplectic basis of cycles, and
is the fundamental second kind differential normalized on the marking, then the invariants
are quasi-modular forms under the modular group of marking changes. The invariants
satisfy BCOV equations.
Generalizations
Higher order ramifications
In case the branchpoints are not simple, the definition is amended as follows[7] (simple branchpoints correspond to k=2):
\begin{align}
\omegag,n(z1,z2,...,zn)=&\suma=branchpoints\operatorname{Res}z\to
\sum | |
| J\subsetx-1(x(z))\setminus\{z\ |
,\#J=k-1}
Kk(z1,z,J)\
&
⋅ \sum | |
| J1,...,J\ell\vdashJ\cup\{z\ |
} \sum'_ \prod_^l \omega_(J_i,I_i)\end
The first sum is over partitions
of
with non empty parts
, and in the second sum, the prime means excluding all terms such that
.
is called the recursion kernel:
Kk(z0,z1,...,zk)=
| | z1 | | \int | | \omega0,2(z0,z') | | z'=* | |
|
| k | | \prod | | (\omega0,1(z1)-\omega0,1(zi)) | | i=2 | |
|
The base point * of the integral in the numerator can be chosen arbitrarily in a vicinity of the branchpoint, the invariants
will not depend on it.
Topological recursion invariants and intersection numbers
The invariants
can be written in terms of intersection numbers of
tautological classes:
[8] (*)
\begin{align}
\omegag,n(z1,...,zn)
=23g-3+n&\sumG=Graphs
\int | |
| \left(\prodv=vertices{\overline{lM |
}_ \right)}\,\, \prod_ e^ \\ &\prod_ \left(\sum_ B_ \psi_p^d \psi_^\right) \prod_ \left(\sum_ \psi_^ d\xi_(z_i) \right)\end
where the sum is over dual graphs of
stable nodal Riemann surfaces of total arithmetic genus
, and
smooth labeled marked points
, and equipped with a map
\sigma:\{vertices\}\to\{branchpoints\}
.
is the
Chern class of the
cotangent line bundle
whose fiber is the cotangent plane at
.
is the
th Mumford's kappa class.The coefficients
,
,
, are the Taylor expansion coefficients of
and
in the vicinity of branchpoints as follows:in the vicinity of a branchpoint
(assumed simple), a local coordinate is
. The Taylor expansion of
near branchpoints
,
defines the coefficients
}_ \left(\frac+ 2\pi \sum_^\infty \frac\, \zeta_a(z)^d \zeta_(z')^ \right) d\zeta_a(z)d\zeta_(z').
The Taylor expansion at
, defines the 1-forms coefficients
d\xia,d(z)=
\operatorname{Res}z'\to
\omega0,2(z,z')
whose Taylor expansion near a branchpoint
is
}_ \frac+ \sum_^\infty \frac\zeta_(z)^ d\zeta_(z) .
Write also the Taylor expansion of
}_ \sum_^\infty t_\ \frac\ \zeta_(z)^ d\zeta_(z) .
Equivalently, the coefficients
can be found from expansion coefficients of the Laplace transform, and the coefficients
are the expansion coefficients of the log of the Laplace transform
\omega0,1(z)e-u=
ta,ku-k=
.
For example, we have
\omega0,3(z1,z2,z3)=\suma
d\xia,0(z1)d\xia,0(z2)d\xia,0(z3).
\omega1,1(z)=2\suma
\left(
d\xia,1(z)+
d\xia,0(z)+
a,0;a,0d\xia,0(z)\right).
The formula (*) generalizes ELSV formula as well as Mumford's formula and Mariño-Vafa formula.
Some applications in enumerative geometry
Mirzakhani's recursion
M. Mirzakhani's recursion for hyperbolic volumes of moduli spaces is an instance of topological recursion.For the choice of spectral curve
\left(C; C; x:z\mapstoz2; \omega0,1(z)=
z\sin{(\piz)}dz;\omega0,2(z1,z2)=
\right)
the n-form
is the Laplace transform of the
Weil-Petersson volumeFg,n(z1,...,zn)=
dL1...
dLn
w
where
is the moduli space of hyperbolic surfaces of genus g with n geodesic boundaries of respective lengths
, and
is the Weil-Petersson volume form.
The topological recursion for the n-forms
, is then equivalent to Mirzakhani's recursion.
For the choice of spectral curve
\left(C; C; x:z\mapstoz2; \omega0,1(z)=2z2dz;\omega0,2(z1,z2)=
\right)
the n-form
is
Fg,n(z1,...,zn)=22-2g-n
\right\rangleg
where
is the
Witten-Kontsevich intersection number of
Chern classes of cotangent line bundles in the compactified
moduli space of Riemann surfaces of genus g with n smooth marked points.
Hurwitz numbers
For the choice of spectral curve
\left(C; C; x:-z+ln{z}; \omega0,1(z)=(1-z)dz;\omega0,2(z1,z2)=
\right)
the n-form
is
Fg,n(z1,...,zn)=\sum\ell(\mu)\leq
)
where
is the connected simple
Hurwitz number of genus g with ramification
: the number of branch covers of the Riemann sphere by a genus g connected surface, with 2g-2+n simple ramification points, and one point with ramification profile given by the partition
.
Gromov–Witten numbers and the BKMP conjecture
Let
a toric
Calabi–Yau 3-fold, with Kähler moduli
.Its
mirror manifold is singular over a complex plane curve
given by a polynomial equation
, whose coefficients are functions of the Kähler moduli.For the choice of spectral curve
\left(\Sigma; C*; x; \omega0,1=ydx;\omega0,2\right)
with
the fundamental second kind differential on
,
According to the BKMP conjecture, the n-form
is
Fg,n(z1,...,zn)=
\sum | |
| \mu1,...,\mun\inH1(lL,Z) |
td
lNg(akX,lL;d,\mu1,...,\mun)
where
lNg(akX,lL;d,\mu1,...,\mun)
=\int[{\overline{lM
}_(\mathfrak X,\mathcal L, \mathbf d,\mu_1,\dots,\mu_n)]^} 1
is the genus g Gromov–Witten number, representing the number of holomorphic maps of a surface of genus g into
, with n boundaries mapped to a special Lagrangian submanifold
.
is the 2nd relative homology class of the surface's image, and
are homology classes (winding number) of the boundary images.
The BKMP conjecture has since then been proven.
References
[9]
Notes and References
- Invariants of algebraic curves and topological expansion, B. Eynard, N. Orantin, math-ph/0702045, ccsd-hal-00130963, Communications in Number Theory and Physics, Vol 1, Number 2, p347-452.
- B. Eynard, Topological expansion for the 1-hermitian matrix model correlation functions, JHEP/024A/0904, hep-th/0407261
A short overview of the ”Topological recursion”, math-ph/arXiv:1412.3286
- A. Alexandrov, A. Mironov, A. Morozov, Solving Virasoro Constraints in Matrix Models, Fortsch.Phys.53:512-521,2005, arXiv:hep-th/0412205
- L. Chekhov, B. Eynard, N. Orantin, Free energy topological expansion for the 2-matrix model, JHEP 0612 (2006) 053, math-ph/0603003
- Vincent Bouchard, Albrecht Klemm, Marcos Marino, Sara Pasquetti, Remodeling the B-model, Commun.Math.Phys.287:117-178,2009
- P. Dunin-Barkowski, N. Orantin, S. Shadrin, L. Spitz, "Identification of the Givental formula with the spectral curve topological recursion procedure", Commun.Math.Phys. 328 (2014) 669-700.
- V. Bouchard, B. Eynard, "Think globally, compute locally", JHEP02(2013)143.
- B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves, math-ph: arxiv.1110.2949, Journal Communications in Number Theory and Physics, Volume 8, Number 3.
- O. Dumitrescu and M. Mulase,Lectures on the topological recursion for Higgs bindles and quantum curves,https://www.math.ucdavis.edu/~mulase/texfiles/OMLectures.pdf