- ⊗ X
\operatorname{Hom}(X,-)
\operatorname{Hom}(Y ⊗ X,Z)\cong\operatorname{Hom}(Y,\operatorname{Hom}(X,Z)).
This is made more precise below. The order of terms in the phrase "tensor-hom adjunction" reflects their relationship: tensor is the left adjoint, while hom is the right adjoint.
Say R and S are (possibly noncommutative) rings, and consider the right module categories (an analogous statement holds for left modules):
l{C}=ModS and l{D}=ModR.
Fix an
(R,S)
X
F\colonlD → lC
G\colonlC → lD
F(Y)=Y ⊗ RX forY\inl{D}
G(Z)=\operatorname{Hom}S(X,Z) forZ\inl{C}
Then
F
G
\operatorname{Hom}S(Y ⊗ RX,Z)\cong\operatorname{Hom}R(Y,\operatorname{Hom}S(X,Z)).
This is actually an isomorphism of abelian groups. More precisely, if
Y
(A,R)
Z
(B,S)
(B,A)
Like all adjunctions, the tensor-hom adjunction can be described by its counit and unit natural transformations. Using the notation from the previous section, the counit
\varepsilon:FG\to1l{C
has components
\varepsilonZ:\operatorname{Hom}S(X,Z) ⊗ RX\toZ
given by evaluation: For
\phi\in\operatorname{Hom}S(X,Z) and x\inX,
\varepsilon(\phi ⊗ x)=\phi(x).
The components of the unit
η:1l{D
ηY:Y\to\operatorname{Hom}S(X,Y ⊗ RX)
are defined as follows: For
y
Y
ηY(y)\in\operatorname{Hom}S(X,Y ⊗ RX)
is a right
S
ηY(y)(t)=y ⊗ t fort\inX.
The counit and unit equations can now be explicitly verified. For
Y
l{D}
\varepsilonFY\circF(ηY):Y ⊗ RX\to\operatorname{Hom}S(X,Y ⊗ RX) ⊗ RX\to Y ⊗ RX
is given on simple tensors of
Y ⊗ X
\varepsilonFY\circF(ηY)(y ⊗ x)=ηY(y)(x)=y ⊗ x.
Likewise,
G(\varepsilonZ)\circηGZ: \operatorname{Hom}S(X,Z)\to\operatorname{Hom}S(X,\operatorname{Hom}S(X,Z) ⊗ RX)\to \operatorname{Hom}S(X,Z).
For
\phi
\operatorname{Hom}S(X,Z)
G(\varepsilonZ)\circηGZ(\phi)
is a right
S
G(\varepsilonZ)\circηGZ(\phi)(x)=\varepsilonZ(\phi ⊗ x)=\phi(x)
and therefore
G(\varepsilonZ)\circηGZ(\phi)=\phi.
\hom(X,-)
- ⊗ X
\hom(X,-)
- ⊗ X