Telescope Explained

A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation.[1] Originally, it was an optical instrument using lenses, curved mirrors, or a combination of both to observe distant objects – an optical telescope. Nowadays, the word "telescope" is defined as a wide range of instruments capable of detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors.

The first known practical telescopes were refracting telescopes with glass lenses and were invented in the Netherlands at the beginning of the 17th century. They were used for both terrestrial applications and astronomy.

The reflecting telescope, which uses mirrors to collect and focus light, was invented within a few decades of the first refracting telescope.

In the 20th century, many new types of telescopes were invented, including radio telescopes in the 1930s and infrared telescopes in the 1960s.

Etymology

The word telescope was coined in 1611 by the Greek mathematician Giovanni Demisiani for one of Galileo Galilei's instruments presented at a banquet at the Accademia dei Lincei.[2] [3] In the Starry Messenger, Galileo had used the Latin term Latin: perspicillum. The root of the word is from the Ancient Greek τῆλε, romanized tele 'far' and σκοπεῖν, skopein 'to look or see'; τηλεσκόπος, teleskopos 'far-seeing'.[4]

History

See main article: History of the telescope.

The earliest existing record of a telescope was a 1608 patent submitted to the government in the Netherlands by Middelburg spectacle maker Hans Lipperhey for a refracting telescope.[5] The actual inventor is unknown but word of it spread through Europe. Galileo heard about it and, in 1609, built his own version, and made his telescopic observations of celestial objects.[6] [7]

The idea that the objective, or light-gathering element, could be a mirror instead of a lens was being investigated soon after the invention of the refracting telescope.[8] The potential advantages of using parabolic mirrors—reduction of spherical aberration and no chromatic aberration—led to many proposed designs and several attempts to build reflecting telescopes.[9] In 1668, Isaac Newton built the first practical reflecting telescope, of a design which now bears his name, the Newtonian reflector.[10]

The invention of the achromatic lens in 1733 partially corrected color aberrations present in the simple lens[11] and enabled the construction of shorter, more functional refracting telescopes. Reflecting telescopes, though not limited by the color problems seen in refractors, were hampered by the use of fast tarnishing speculum metal mirrors employed during the 18th and early 19th century—a problem alleviated by the introduction of silver coated glass mirrors in 1857, and aluminized mirrors in 1932.[12] The maximum physical size limit for refracting telescopes is about 1abbr=offNaNabbr=off, dictating that the vast majority of large optical researching telescopes built since the turn of the 20th century have been reflectors. The largest reflecting telescopes currently have objectives larger than 10abbr=offNaNabbr=off, and work is underway on several 30-40m designs.[13] The 20th century also saw the development of telescopes that worked in a wide range of wavelengths from radio to gamma-rays. The first purpose-built radio telescope went into operation in 1937. Since then, a large variety of complex astronomical instruments have been developed.

In space

See main article: Space telescope.

Since the atmosphere is opaque for most of the electromagnetic spectrum, only a few bands can be observed from the Earth's surface. These bands are visible – near-infrared and a portion of the radio-wave part of the spectrum.[14] For this reason there are no X-ray or far-infrared ground-based telescopes as these have to be observed from orbit. Even if a wavelength is observable from the ground, it might still be advantageous to place a telescope on a satellite due to issues such as clouds, astronomical seeing and light pollution.[15]

The disadvantages of launching a space telescope include cost, size, maintainability and upgradability.[16]

Some examples of space telescopes from NASA are the Hubble Space Telescope that detects visible light, ultraviolet, and near-infrared wavelengths, the Spitzer Space Telescope that detects infrared radiation, and the Kepler Space Telescope that discovered thousands of exoplanets.[17] The latest telescope that was launched was the James Webb Space Telescope on December 25, 2021, in Kourou, French Guiana. The Webb telescope detects infrared light.[18]

By electromagnetic spectrum

The name "telescope" covers a wide range of instruments. Most detect electromagnetic radiation, but there are major differences in how astronomers must go about collecting light (electromagnetic radiation) in different frequency bands.

As wavelengths become longer, it becomes easier to use antenna technology to interact with electromagnetic radiation (although it is possible to make very tiny antenna). The near-infrared can be collected much like visible light; however, in the far-infrared and submillimetre range, telescopes can operate more like a radio telescope. For example, the James Clerk Maxwell Telescope observes from wavelengths from 3 μm (0.003 mm) to 2000 μm (2 mm), but uses a parabolic aluminum antenna.[19] On the other hand, the Spitzer Space Telescope, observing from about 3 μm (0.003 mm) to 180 μm (0.18 mm) uses a mirror (reflecting optics). Also using reflecting optics, the Hubble Space Telescope with Wide Field Camera 3 can observe in the frequency range from about 0.2 μm (0.0002 mm) to 1.7 μm (0.0017 mm) (from ultra-violet to infrared light).[20]

With photons of the shorter wavelengths, with the higher frequencies, glancing-incident optics, rather than fully reflecting optics are used. Telescopes such as TRACE and SOHO use special mirrors to reflect extreme ultraviolet, producing higher resolution and brighter images than are otherwise possible. A larger aperture does not just mean that more light is collected, it also enables a finer angular resolution.

Telescopes may also be classified by location: ground telescope, space telescope, or flying telescope. They may also be classified by whether they are operated by professional astronomers or amateur astronomers. A vehicle or permanent campus containing one or more telescopes or other instruments is called an observatory.

Radio and submilimeter

See main article: Radio telescope, Radio astronomy and Submillimetre astronomy. Radio telescopes are directional radio antennas that typically employ a large dish to collect radio waves. The dishes are sometimes constructed of a conductive wire mesh whose openings are smaller than the wavelength being observed.

Unlike an optical telescope, which produces a magnified image of the patch of sky being observed, a traditional radio telescope dish contains a single receiver and records a single time-varying signal characteristic of the observed region; this signal may be sampled at various frequencies. In some newer radio telescope designs, a single dish contains an array of several receivers; this is known as a focal-plane array.

By collecting and correlating signals simultaneously received by several dishes, high-resolution images can be computed. Such multi-dish arrays are known as astronomical interferometers and the technique is called aperture synthesis. The 'virtual' apertures of these arrays are similar in size to the distance between the telescopes. As of 2005, the record array size is many times the diameter of the Earth – using space-based very-long-baseline interferometry (VLBI) telescopes such as the Japanese HALCA (Highly Advanced Laboratory for Communications and Astronomy) VSOP (VLBI Space Observatory Program) satellite.[21]

Aperture synthesis is now also being applied to optical telescopes using optical interferometers (arrays of optical telescopes) and aperture masking interferometry at single reflecting telescopes.

Radio telescopes are also used to collect microwave radiation, which has the advantage of being able to pass through the atmosphere and interstellar gas and dust clouds.

Some radio telescopes such as the Allen Telescope Array are used by programs such as SETI[22] and the Arecibo Observatory to search for extraterrestrial life.[23] [24]

Infrared

See main article: Infrared telescope and Infrared astronomy.

Visible light

See main article: Optical telescope and Visible-light astronomy. An optical telescope gathers and focuses light mainly from the visible part of the electromagnetic spectrum.[25] Optical telescopes increase the apparent angular size of distant objects as well as their apparent brightness. For the image to be observed, photographed, studied, and sent to a computer, telescopes work by employing one or more curved optical elements, usually made from glass lenses and/or mirrors, to gather light and other electromagnetic radiation to bring that light or radiation to a focal point. Optical telescopes are used for astronomy and in many non-astronomical instruments, including: theodolites (including transits), spotting scopes, monoculars, binoculars, camera lenses, and spyglasses. There are three main optical types:

A Fresnel imager is a proposed ultra-lightweight design for a space telescope that uses a Fresnel lens to focus light.[28] [29]

Beyond these basic optical types there are many sub-types of varying optical design classified by the task they perform such as astrographs,[30] comet seekers[31] and solar telescopes.[32]

Ultraviolet

Most ultraviolet light is absorbed by the Earth's atmosphere, so observations at these wavelengths must be performed from the upper atmosphere or from space.[33] [34]

X-ray

See main article: X-ray telescope and X-ray astronomy. X-rays are much harder to collect and focus than electromagnetic radiation of longer wavelengths. X-ray telescopes can use X-ray optics, such as Wolter telescopes composed of ring-shaped 'glancing' mirrors made of heavy metals that are able to reflect the rays just a few degrees. The mirrors are usually a section of a rotated parabola and a hyperbola, or ellipse. In 1952, Hans Wolter outlined 3 ways a telescope could be built using only this kind of mirror. Examples of space observatories using this type of telescope are the Einstein Observatory,[35] ROSAT,[36] and the Chandra X-ray Observatory.[37] [38] In 2012 the NuSTAR X-ray Telescope was launched which uses Wolter telescope design optics at the end of a long deployable mast to enable photon energies of 79 keV.[39] [40]

Gamma ray

Higher energy X-ray and gamma ray telescopes refrain from focusing completely and use coded aperture masks: the patterns of the shadow the mask creates can be reconstructed to form an image.

X-ray and Gamma-ray telescopes are usually installed on high-flying balloons[41] [42] or Earth-orbiting satellites since the Earth's atmosphere is opaque to this part of the electromagnetic spectrum. An example of this type of telescope is the Fermi Gamma-ray Space Telescope which was launched in June 2008.[43] [44]

The detection of very high energy gamma rays, with shorter wavelength and higher frequency than regular gamma rays, requires further specialization. Such detections can be made either with the Imaging Atmospheric Cherenkov Telescopes (IACTs) or with Water Cherenkov Detectors (WCDs). Examples of IACTs are H.E.S.S.[45] and VERITAS[46] [47] with the next-generation gamma-ray telescope- CTA, currently under construction. HAWC and LHAASO are examples of gamma-ray detectors based on the Water Cherenkov Detectors.

A discovery in 2012 may allow focusing gamma-ray telescopes. At photon energies greater than 700 keV, the index of refraction starts to increase again.[48]

Lists of telescopes

See also

Further reading

External links

Notes and References

  1. Web site: Telescope . The American Heritage Dictionary . 12 July 2018. 11 March 2020. https://web.archive.org/web/20200311113032/https://www.ahdictionary.com/word/search.html?q=TELESCOPE. live.
  2. [#Reference-Sobel-2000|Sobel (2000, p.43)]
  3. Rosen, Edward, The Naming of the Telescope (1947)
  4. Book: Jack, Albert . They Laughed at Galileo: How the Great Inventors Proved Their Critics Wrong . 2015 . Skyhorse . 978-1629147581.
  5. http://galileo.rice.edu/sci/instruments/telescope.html galileo.rice.edu The Galileo Project > Science > The Telescope by Al Van Helden: The Hague discussed the patent applications first of Hans Lipperhey of Middelburg, and then of
  6. Web site: NASA – Telescope History. www.nasa.gov. 11 July 2017. 14 February 2021. https://web.archive.org/web/20210214151151/https://www.nasa.gov/audience/forstudents/9-12/features/telescope_feature_912.html. live.
  7. Book: Loker, Aleck. Profiles in Colonial History. 20 November 2017. Aleck Loker. Google Books. 978-1-928874-16-4. 12 December 2015. 27 May 2016. https://web.archive.org/web/20160527140225/https://books.google.com/books?id=Lq1rd1ecFCYC&pg=PA15. live.
  8. Book: Watson, Fred. Stargazer: The Life and Times of the Telescope. 20 November 2017. Allen & Unwin. Google Books. 978-1-74176-392-8. 21 November 2020. 2 March 2021. https://web.archive.org/web/20210302184233/https://books.google.com/books?id=2LZZginzib4C&q=intitle:Stargazer+digges+coins&pg=PA40. live.
  9. Attempts by Niccolò Zucchi and James Gregory and theoretical designs by Bonaventura Cavalieri, Marin Mersenne, and Gregory among others
  10. Book: Hall, A. Rupert . Isaac Newton: Adventurer in Thought . . 1992 . 9780521566698 . 67.
  11. Web site: Chester Moor Hall . . 25 May 2016 . 17 May 2016 . https://web.archive.org/web/20160517172124/http://www.britannica.com/biography/Chester-Moor-Hall . live .
  12. Book: Bakich, Michael E. . The Cambridge Encyclopedia of Amateur Astronomy . Chapter Two: Equipment . 33 . Cambridge University Press . 10 July 2003 . 9780521812986 . https://web.archive.org/web/20080910020928/http://www.cambridge.org/uk/astronomy/features/amateur/files/p28-4.pdf . 2008-09-10.
  13. Web site: Karl . Tate . World's Largest Reflecting Telescopes Explained (Infographic) . August 30, 2013 . Space.com . 20 August 2022 . 20 August 2022 . https://web.archive.org/web/20220820034258/https://www.space.com/22505-worlds-largest-telescopes-explained-infographic.html . live .
  14. Web site: Stierwalt . Everyday Einstein Sabrina . Why Do We Put Telescopes in Space? . 2022-08-20 . Scientific American . en . 20 August 2022 . https://web.archive.org/web/20220820004401/https://www.scientificamerican.com/article/why-do-we-put-telescopes-in-space/ . live .
  15. Web site: Siegel . Ethan . 5 Reasons Why Astronomy Is Better From The Ground Than In Space . 2022-08-20 . Forbes . en . 20 August 2022 . https://web.archive.org/web/20220820004557/https://www.forbes.com/sites/startswithabang/2018/03/22/5-reasons-why-astronomy-is-better-from-the-ground-than-in-space/ . live .
  16. Web site: Siegel . Ethan . This Is Why We Can't Just Do All Of Our Astronomy From Space . 2022-08-20 . Forbes . en . 20 August 2022 . https://web.archive.org/web/20220820004551/https://www.forbes.com/sites/startswithabang/2019/11/27/this-is-why-we-cant-just-do-all-of-our-astronomy-from-space/ . live .
  17. Web site: Brennan, Pat . NASA . Missons/Discovery . NASA's exoplanet-hunting space telescopes . 17 September 2023 . 26 July 2022.
  18. Web site: Space Telescope Science Institution . NASA . Quick Facts . Webb Space Telescope . 17 September 2023 . 19 July 2023.
  19. Web site: The James-Clerk-Maxwell Observatory. ASTROLab du parc national du Mont-Mégantic. January 2016. Canada under the stars. en. 16 April 2017. 5 February 2011. https://web.archive.org/web/20110205193130/http://astro-canada.ca/_en/a2111.html. live.
  20. Web site: Hubble's Instruments: WFC3 – Wide Field Camera 3. www.spacetelescope.org. en. 16 April 2017. 12 November 2020. https://web.archive.org/web/20201112014826/https://www.spacetelescope.org/about/general/instruments/wfc3/. live.
  21. Web site: Observatories Across the Electromagnetic Spectrum . 2022-08-20 . imagine.gsfc.nasa.gov . 20 August 2022 . https://web.archive.org/web/20220820005838/https://imagine.gsfc.nasa.gov/science/toolbox/emspectrum_observatories1.html . live .
  22. Dalton . Rex . 2000-08-01 . Microsoft moguls back search for ET intelligence . Nature . en . 406 . 6796 . 551 . 10.1038/35020722 . 10949267 . 4415108 . 1476-4687. free .
  23. Tarter . Jill . September 2001 . The Search for Extraterrestrial Intelligence (SETI) . Annual Review of Astronomy and Astrophysics . en . 39 . 1 . 511–548 . 10.1146/annurev.astro.39.1.511 . 2001ARA&A..39..511T . 261531924 . 0066-4146 . 20 August 2022 . 20 August 2022 . https://web.archive.org/web/20220820010640/https://www.annualreviews.org/doi/10.1146/annurev.astro.39.1.511 . dead .
  24. Web site: Nola Taylor Tillman . 2016-08-02 . SETI & the Search for Extraterrestrial Life . 2022-08-20 . Space.com . en . 17 August 2022 . https://web.archive.org/web/20220817113408/https://www.space.com/33626-search-for-extraterrestrial-intelligence.html . live .
  25. Book: Jones, Barrie W.. The Search for Life Continued: Planets Around Other Stars. 2 September 2008. Springer Science & Business Media. 978-0-387-76559-4. en. 12 December 2015. 8 March 2020. https://web.archive.org/web/20200308111927/https://books.google.com/books?id=5wX9aHqfBS0C&pg=PA111. live.
  26. Web site: Lauren Cox . 2021-10-26 . Who Invented the Telescope? . 2022-08-20 . Space.com . en . 16 July 2013 . https://web.archive.org/web/20130716103207/https://www.space.com/21950-who-invented-the-telescope.html . live .
  27. 1918PA.....26..525R Page 525 . 2022-08-20 . Popular Astronomy . 1918PA.....26..525R . Rupert . Charles G. . 1918 . 26 . 525 . 20 August 2022 . https://web.archive.org/web/20220820090239/https://adsabs.harvard.edu/full/1918PA.....26..525R . live .
  28. Web site: Telescope could focus light without a mirror or lens . 2022-08-20 . New Scientist . en-US . 20 August 2022 . https://web.archive.org/web/20220820084508/https://www.newscientist.com/article/dn13820-telescope-could-focus-light-without-a-mirror-or-lens/ . live .
  29. Koechlin . L. . Serre . D. . Duchon . P. . 2005-11-01 . High resolution imaging with Fresnel interferometric arrays: suitability for exoplanet detection . Astronomy & Astrophysics . en . 443 . 2 . 709–720 . 10.1051/0004-6361:20052880 . astro-ph/0510383 . 2005A&A...443..709K . 119423063 . 0004-6361 . 20 August 2022 . 3 December 2021 . https://web.archive.org/web/20211203102019/https://www.aanda.org/articles/aa/abs/2005/44/aa2880-05/aa2880-05.html . live .
  30. Web site: Celestron Rowe-Ackermann Schmidt Astrograph – Astronomy Now . 2022-08-20 . en-US . 1 October 2022 . https://web.archive.org/web/20221001151936/https://astronomynow.com/2016/06/01/celestron-rowe-ackermann-schmidt-astrograph/ . live .
  31. Web site: Telescope (Comet Seeker) . 2022-08-20 . Smithsonian Institution . en . 20 August 2022 . https://web.archive.org/web/20220820084507/https://www.si.edu/object/nmah_1183753 . live .
  32. Stenflo . J. O. . 2001-01-01 . Limitations and Opportunities for the Diagnostics of Solar and Stellar Magnetic Fields . Magnetic Fields Across the Hertzsprung-Russell Diagram . 248 . 639 . 2001ASPC..248..639S . 20 August 2022 . 20 August 2022 . https://web.archive.org/web/20220820084507/https://ui.adsabs.harvard.edu/abs/2001ASPC..248..639S . live .
  33. Book: Allen, C. W. . Allen's astrophysical quantities . 2000 . AIP Press . Arthur N. Cox . 0-387-98746-0 . 4th . New York . 40473741.
  34. Ortiz . Roberto . Guerrero . Martín A. . 2016-06-28 . Ultraviolet emission from main-sequence companions of AGB stars . Monthly Notices of the Royal Astronomical Society . 461 . 3 . 3036–3046 . 10.1093/mnras/stw1547 . 0035-8711. free . 1606.09086 . 2016MNRAS.461.3036O .
  35. Giacconi . R. . Branduardi . G. . Briel . U. . Epstein . A. . Fabricant . D. . Feigelson . E. . Forman . W. . Gorenstein . P. . Grindlay . J. . Gursky . H. . Harnden . F. R. . Henry . J. P. . Jones . C. . Kellogg . E. . Koch . D. . June 1979 . The Einstein /HEAO 2/ X-ray Observatory . The Astrophysical Journal . en . 230 . 540 . 10.1086/157110 . 1979ApJ...230..540G . 120943949 . 0004-637X . free .
  36. Web site: DLR - About the ROSAT mission . 2022-08-20 . DLRARTICLE DLR Portal . en . 16 August 2022 . https://web.archive.org/web/20220816133434/https://www.dlr.de/content/en/articles/missions-projects/past-missions/rosat/rosat-mission.html . live .
  37. Schwartz . Daniel A. . 2004-08-01 . The development and scientific impact of the chandra x-ray observatory . International Journal of Modern Physics D . 13 . 7 . 1239–1247 . 10.1142/S0218271804005377 . astro-ph/0402275 . 2004IJMPD..13.1239S . 858689 . 0218-2718 . 20 August 2022 . 20 August 2022 . https://web.archive.org/web/20220820013024/https://www.worldscientific.com/doi/abs/10.1142/S0218271804005377 . live .
  38. Madejski . Greg . 2006 . Recent and Future Observations in the X-ray and Gamma-ray Bands: Chandra, Suzaku, GLAST, and NuSTAR . AIP Conference Proceedings . 801 . 1 . 21–30 . 10.1063/1.2141828 . astro-ph/0512012 . 2005AIPC..801...21M . 14601312 . 0094-243X . 20 August 2022 . 28 April 2022 . https://web.archive.org/web/20220428135227/https://aip.scitation.org/doi/abs/10.1063/1.2141828 . live .
  39. Web site: NuStar: Instrumentation: Optics. dead. https://web.archive.org/web/20101101113623/http://www.nustar.caltech.edu/about-nustar/instrumentation/optics. 1 November 2010.
  40. Hailey . Charles J. . An . HongJun . Blaedel . Kenneth L. . Brejnholt . Nicolai F. . Christensen . Finn E. . Craig . William W. . Decker . Todd A. . Doll . Melanie . Gum . Jeff . Koglin . Jason E. . Jensen . Carsten P. . Hale . Layton . Mori . Kaya . Pivovaroff . Michael J. . Sharpe . Marton . Monique . Stephen S . Tadayuki . Arnaud . Murray . Takahashi . 2010-07-29 . The Nuclear Spectroscopic Telescope Array (NuSTAR): optics overview and current status . Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray . SPIE . 7732 . 197–209 . 10.1117/12.857654. 2010SPIE.7732E..0TH . 121831705 .
  41. Braga . João . D’Amico . Flavio . Avila . Manuel A. C. . Penacchioni . Ana V. . Sacahui . J. Rodrigo . Santiago . Valdivino A. de . Mattiello-Francisco . Fátima . Strauss . Cesar . Fialho . Márcio A. A. . 2015-08-01 . The protoMIRAX hard X-ray imaging balloon experiment . Astronomy & Astrophysics . en . 580 . A108 . 10.1051/0004-6361/201526343 . 1505.06631 . 2015A&A...580A.108B . 119222297 . 0004-6361 . 20 August 2022 . 29 January 2022 . https://web.archive.org/web/20220129081951/https://www.aanda.org/articles/aa/abs/2015/08/aa26343-15/aa26343-15.html . live .
  42. Web site: Brett Tingley . 2022-07-13 . Balloon-borne telescope lifts off to study black holes and neutron stars . 2022-08-20 . Space.com . en . 20 August 2022 . https://web.archive.org/web/20220820025636/https://www.space.com/balloon-telescope-xl-calibur-x-rays-black-holes . live .
  43. Atwood . W. B. . Abdo . A. A. . Ackermann . M. . Althouse . W. . Anderson . B. . Axelsson . M. . Baldini . L. . Ballet . J. . Band . D. L. . Barbiellini . G. . Bartelt . J. . Bastieri . D. . Baughman . B. M. . Bechtol . K. . Bédérède . D. . The Large Area Telescope on Thefermi Gamma-Ray Space Telescopemission . 2009-06-01 . The Astrophysical Journal . 697 . 2 . 1071–1102 . 10.1088/0004-637X/697/2/1071 . 0902.1089 . 2009ApJ...697.1071A . 26361978 . 0004-637X . 20 August 2022 . 20 August 2022 . https://web.archive.org/web/20220820014256/https://iopscience.iop.org/article/10.1088/0004-637X/697/2/1071 . live .
  44. Ackermann . M. . Ajello . M. . Baldini . L. . Ballet . J. . Barbiellini . G. . Bastieri . D. . Bellazzini . R. . Bissaldi . E. . Bloom . E. D. . Bonino . R. . Bottacini . E. . Brandt . T. J. . Bregeon . J. . Bruel . P. . Buehler . R. . 2017-07-13 . Search for Extended Sources in the Galactic Plane Using Six Years ofFermi-Large Area Telescope Pass 8 Data above 10 GeV . The Astrophysical Journal . en . 843 . 2 . 139 . 10.3847/1538-4357/aa775a . 1702.00476 . 2017ApJ...843..139A . 119187437 . 1538-4357 . free .
  45. Aharonian . F. . Akhperjanian . A. G. . Bazer-Bachi . A. R. . Beilicke . M. . Benbow . W. . Berge . D. . Bernlöhr . K. . Boisson . C. . Bolz . O. . Borrel . V. . Braun . I. . Breitling . F. . Brown . A. M. . Bühler . R. . Büsching . I. . 2006-10-01 . Observations of the Crab nebula with HESS . Astronomy & Astrophysics . en . 457 . 3 . 899–915 . 10.1051/0004-6361:20065351 . 0004-6361. astro-ph/0607333 . 2006A&A...457..899A .
  46. Krennrich . F. . Bond . I. H. . Boyle . P. J. . Bradbury . S. M. . Buckley . J. H. . Carter-Lewis . D. . Celik . O. . Cui . W. . Daniel . M. . D'Vali . M. . de la Calle Perez . I. . Duke . C. . Falcone . A. . Fegan . D. J. . Fegan . S. J. . 2004-04-01 . VERITAS: the Very Energetic Radiation Imaging Telescope Array System . New Astronomy Reviews . 2nd VERITAS Symposium on the Astrophysics of Extragalactic Sources . en . 48 . 5 . 345–349 . 10.1016/j.newar.2003.12.050 . 2004NewAR..48..345K . 10379/9414 . 1387-6473. free .
  47. Weekes . T. C. . Cawley . M. F. . Fegan . D. J. . Gibbs . K. G. . Hillas . A. M. . Kowk . P. W. . Lamb . R. C. . Lewis . D. A. . Macomb . D. . Porter . N. A. . Reynolds . P. T. . Vacanti . G. . 1989-07-01 . Observation of TeV Gamma Rays from the Crab Nebula Using the Atmospheric Cerenkov Imaging Technique . The Astrophysical Journal . 342 . 379 . 10.1086/167599 . 1989ApJ...342..379W . 119424766 . 0004-637X . 20 August 2022 . 11 April 2023 . https://web.archive.org/web/20230411132918/https://ui.adsabs.harvard.edu/abs/1989ApJ...342..379W . live .
  48. Web site: Silicon 'prism' bends gamma rays – Physics World. 9 May 2012. 15 May 2012. 12 May 2013. https://web.archive.org/web/20130512101728/http://physicsworld.com/cws/article/news/2012/may/09/silicon-prism-bends-gamma-rays. live.