Swarming motility explained
Swarming motility is a rapid (2–10 μm/s) and coordinated translocation of a bacterial population across solid or semi-solid surfaces,[1] and is an example of bacterial multicellularity and swarm behaviour. Swarming motility was first reported by Jorgen Henrichsen[2] and has been mostly studied in genus Serratia,[3] [4] Salmonella,[5] Aeromonas,[6] Bacillus,[7] Yersinia,[8] Pseudomonas,[9] [10] [11] [12] [13] Proteus,[14] Vibrio[15] [16] and Escherichia.[17] [18]
This multicellular behavior has been mostly observed in controlled laboratory conditions and relies on two critical elements: 1) the nutrient composition and 2) viscosity of culture medium (i.e. % agar). One particular feature of this type of motility is the formation of dendritic fractal-like patterns formed by migrating swarms moving away from an initial location. Although the majority of species can produce tendrils when swarming, some species like Proteus mirabilis do form concentric circles motif instead of dendritic patterns.[19]
Biosurfactant, quorum sensing and swarming
In some species, swarming motility requires the self-production of biosurfactant to occur.[20] Biosurfactant synthesis is usually under the control of an intercellular communication system called quorum sensing. Biosurfactant molecules are thought to act by lowering surface tension, thus permitting bacteria to move across a surface.
Cellular differentiation
Swarming bacteria undergo morphological differentiation that distinguish them from their planktonic state. Cells localized at migration front are typically hyperelongated, hyperflagellated and grouped in multicellular raft structures.[21] [22]
Ecological significance
The fundamental role of swarming motility remains unknown. However, it has been observed that active swarming bacteria of Salmonella typhimurium shows an elevated resistance to certain antibiotics compared to undifferentiated cells.[23]
See also
Notes and References
- Bacterial Motility on a Surface: Many Ways to a Common Goal. Annual Review of Microbiology. 2003-01-01. 14527279. 249–73. 57. 1. 10.1146/annurev.micro.57.030502.091014. Rasika M.. Harshey.
- 408329 . 4631369 . 1972 . Henrichsen . J . 36 . 4 . 478–503 . Bacteriological Reviews. 10.1128/MMBR.36.4.478-503.1972 .
- Alberti . L . Harshey . RM . Differentiation of Serratia marcescens 274 into swimmer and swarmer cells . Journal of Bacteriology . 172 . 8 . 4322–28 . 1990 . 2198253 . 213257. 10.1128/jb.172.8.4322-4328.1990 .
- Eberl. L. Molin. S. Givskov. M. Surface Motility of Serratia liquefaciens MG1. Journal of Bacteriology. 181. 6. 1703–12. 1999. 10.1128/JB.181.6.1703-1712.1999. 10074060. 93566 .
- Harshey. Rasika M.. Bees aren't the only ones: swarming in Gram-negative bacteria. Molecular Microbiology. 13. 3. 389–94. 1994. 7997156. 10.1111/j.1365-2958.1994.tb00433.x. 21068729.
- Kirov. Journal of Bacteriology. S.M.. 184. Tassell. 2. B.C.. 547–55. Semmler. A.B.T.. O'Donovan. L.A.. Rabaan. A.A.. Shaw. J.G.. Lateral Flagella and Swarming Motility in Aeromonas Species. 2002. 11751834. 139559 . 10.1128/JB.184.2.547-555.2002.
- Kearns . Daniel B. . Losick . Richard . Swarming motility in undomesticated Bacillus subtilis . Molecular Microbiology . 49 . 3 . 581–90 . 2004 . 12864845 . 10.1046/j.1365-2958.2003.03584.x . free .
- Young. GM. Smith. MJ. Minnich. SA. Miller. VL . The Yersinia enterocolitica Motility Master Regulatory Operon, flhDC, Is Required for Flagellin Production, Swimming Motility, and Swarming Motility. Journal of Bacteriology. 181. 9. 2823–33. 1999. 10.1128/JB.181.9.2823-2833.1999. 10217774. 93725 .
- Déziel . E . Lépine . F . Milot . S . Villemur . R . rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids . Microbiology . 149 . Pt 8 . 2005–13 . 2003 . 12904540 . 10.1099/mic.0.26154-0. free .
- Tremblay . Julien . Richardson . Anne-Pascale . Lépine . François . Déziel . Eric . Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour . Environmental Microbiology . 9 . 10 . 2622–30 . 2007 . 17803784 . 10.1111/j.1462-2920.2007.01396.x. 2007EnvMi...9.2622T .
- 10.1128/JB.182.21.5990-5996.2000. Köhler. T. Curty. LK. Barja. F. Van Delden. C. Pechère. JC. Swarming of Pseudomonas aeruginosa Is Dependent on Cell-to-Cell Signaling and Requires Flagella and Pili. Journal of Bacteriology. 182. 21. 5990–96. 2000. 11029417. 94731 .
- Rashid. MH. Kornberg. A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America. 97. 9. 4885–90. 2000. 10758151. 18327. 10.1073/pnas.060030097. 2000PNAS...97.4885H. free.
- Caiazza . N.C. . Shanks . R.M.Q. . O'Toole . G.A. . Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa . Journal of Bacteriology . 187 . 21 . 7351–61 . 2005 . 16237018 . 1273001 . 10.1128/JB.187.21.7351-7361.2005.
- Rather . Philip N. . Swarmer cell differentiation in Proteus mirabilis . Environmental Microbiology . 7 . 8 . 1065–73 . 2005 . 16011745 . 10.1111/j.1462-2920.2005.00806.x. free . 2005EnvMi...7.1065R .
- McCarter . L. . Silverman . M. . Surface-induced swarmer cell differentiation of Vibrio parahaemoiyticus . Molecular Microbiology . 4 . 7 . 1057–62 . 1990 . 2233248 . 10.1111/j.1365-2958.1990.tb00678.x. free .
- McCarter. Linda L.. Dual Flagellar Systems Enable Motility under Different Circumstances. Journal of Molecular Microbiology and Biotechnology. 7. 1–2. 18–29. 2004. 15170400. 10.1159/000077866. 21963003.
- Harshey. RM. Matsuyama. T . Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proceedings of the National Academy of Sciences of the United States of America. 91. 18. 8631–35. 1994. 8078935. 44660. 10.1073/pnas.91.18.8631 . 1994PNAS...91.8631H. free.
- Burkart. M. Toguchi. A. Harshey. RM. The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 95. 5. 2568–73. 1998. 9482927. 19416. 10.1073/pnas.95.5.2568. 1998PNAS...95.2568B. free.
- Matsuyama . Tohey . Takagi . Yuko . Nakagawa . Yoji . Itoh . Hiroto . Wakita . Junichi . Matsushita . Mitsugu . 2000-01-15 . Dynamic Aspects of the Structured Cell Population in a Swarming Colony of Proteus mirabilis . Journal of Bacteriology . en . 182 . 2 . 385–393 . 10.1128/JB.182.2.385-393.2000 . 0021-9193 . 94287 . 10629184.
- Daniels . Ruth . Vanderleyden . Jos . Michiels . Jan . Quorum sensing and swarming migration in bacteria . FEMS Microbiology Reviews . 28 . 3 . 261–89 . 2004 . 15449604 . 10.1016/j.femsre.2003.09.004. free .
- Julkowska . D. . Obuchowski . M . Holland . IB . Séror . SJ . Branched swarming patterns on a synthetic medium formed by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops . Microbiology . 150 . Pt 6 . 1839–49 . 2004 . 15184570 . 10.1099/mic.0.27061-0. free .
- Single-cell analysis in situ in a Bacillus subtilis swarming community identifies distinct spatially separated subpopulations differentially expressing hag (flagellin), including specialized swarmers. Microbiology. 2011-01-01. 157. 9. 10.1099/mic.0.047159-0. K.. Hamze. S.. Autret. K.. Hinc. S.. Laalami. D.. Julkowska. R.. Briandet. M.. Renault. C.. Absalon. I. B.. Holland. 2456–2469. 21602220. free.
- Kim . W. . Killam . T. . Sood . V. . Surette . M. G. . Swarm-Cell Differentiation in Salmonellaenterica Serovar Typhimurium Results in Elevated Resistance to Multiple Antibiotics . Journal of Bacteriology . 185 . 10 . 3111–7 . 2003 . 12730171 . 154059 . 10.1128/JB.185.10.3111-3117.2003.