In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group (in two Euclidean dimensions, the Lie superalgebra does not generate any Lie supergroup).
The conformal group of the
(p+q)
Rp,q
SO(p+1,q+1)
ak{so}(p+1,q+1)
ak{so}(p+1,q+1)
ak{so}(p+1,q+1)
p
q
ak{osp}*(2N|2,2)
ak{usp}(2,2)\simeqak{so}(4,1)
ak{osp}(N|4)
ak{sp}(4,R)\simeqak{so}(3,2)
ak{su}*(2N|4)
ak{su}*(4)\simeqak{so}(5,1)
ak{su}(2,2|N)
ak{su}(2,2)\simeqak{so}(4,2)
ak{sl}(4|N)
ak{sl}(4,R)\simeqak{so}(3,3)
F(4)
ak{osp}(8*|2N)
ak{so}(8,C)
According to [1] [2] the superconformal algebra with
l{N}
P\mu
D
M\mu\nu
K\mu
A
i | |
T | |
j |
Q\alpha
| |||
\overline{Q} | |||
i |
\alpha | |
S | |
i |
| |||||
{\overline{S}} |
\mu,\nu,\rho,...
\alpha,\beta,...
|
i,j,...
The Lie superbrackets of the bosonic conformal algebra are given by
[M\mu\nu,M\rho\sigma]=η\nu\rhoM\mu\sigma-η\mu\rhoM\nu\sigma+η\nu\sigmaM\rho\mu-η\mu\sigmaM\rho\nu
[M\mu\nu,P\rho]=η\nu\rhoP\mu-η\mu\rhoP\nu
[M\mu\nu,K\rho]=η\nu\rhoK\mu-η\mu\rhoK\nu
[M\mu\nu,D]=0
[D,P\rho]=-P\rho
[D,K\rho]=+K\rho
[P\mu,K\nu]=-2M\mu\nu+2η\mu\nuD
[Kn,Km]=0
[Pn,Pm]=0
\left\{Q\alpha,
j | |||
\overline{Q} | |||
|
\right\}=2
j | |
\delta | |
i |
\mu | |||||
\sigma | |||||
|
P\mu
\left\{Q,Q\right\}=\left\{\overline{Q},\overline{Q}\right\}=0
\left\{
i, | |
S | |
\alpha |
\overline{S} | |||||
|
\right\}=2
i | |
\delta | |
j |
\mu | |||||
\sigma | |||||
|
K\mu
\left\{S,S\right\}=\left\{\overline{S},\overline{S}\right\}=0
\left\{Q,S\right\}=
\left\{Q,\overline{S}\right\}=\left\{\overline{Q},S\right\}=0
The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators:
[A,M]=[A,D]=[A,P]=[A,K]=0
[T,M]=[T,D]=[T,P]=[T,K]=0
But the fermionic generators do carry R-charge:
[A,Q]=- | 1 |
2 |
Q
[A,\overline{Q}]= | 1 |
2 |
\overline{Q}
[A,S]= | 1 |
2 |
S
[A,\overline{S}]=- | 1 |
2 |
\overline{S}
i | |
[T | |
j,Q |
k]=-
i | |
\delta | |
k |
Qj
k]= | |
[T | |
j,{\overline{Q}} |
k | |
\delta | |
j |
{\overline{Q}}i
k]=\delta | |
[T | |
j,S |
k | |
j |
Si
i | |
[T | |
j,\overline{S} |
k]=-
i | |
\delta | |
k |
\overline{S}j
Under bosonic conformal transformations, the fermionic generators transform as:
[D,Q]=- | 1 |
2 |
Q
[D,\overline{Q}]=- | 1 |
2 |
\overline{Q}
[D,S]= | 1 |
2 |
S
[D,\overline{S}]= | 1 |
2 |
\overline{S}
[P,Q]=[P,\overline{Q}]=0
[K,S]=[K,\overline{S}]=0
See main article: super Virasoro algebra. There are two possible algebras with minimal supersymmetry in two dimensions; a Neveu–Schwarz algebra and a Ramond algebra. Additional supersymmetry is possible, for instance the N = 2 superconformal algebra.