Superconformal algebra explained

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group (in two Euclidean dimensions, the Lie superalgebra does not generate any Lie supergroup).

Superconformal algebra in dimension greater than 2

The conformal group of the

(p+q)

-dimensional space

Rp,q

is

SO(p+1,q+1)

and its Lie algebra is

ak{so}(p+1,q+1)

. The superconformal algebra is a Lie superalgebra containing the bosonic factor

ak{so}(p+1,q+1)

and whose odd generators transform in spinor representations of

ak{so}(p+1,q+1)

. Given Kac's classification of finite-dimensional simple Lie superalgebras, this can only happen for small values of

p

and

q

. A (possibly incomplete) list is

ak{osp}*(2N|2,2)

in 3+0D thanks to

ak{usp}(2,2)\simeqak{so}(4,1)

;

ak{osp}(N|4)

in 2+1D thanks to

ak{sp}(4,R)\simeqak{so}(3,2)

;

ak{su}*(2N|4)

in 4+0D thanks to

ak{su}*(4)\simeqak{so}(5,1)

;

ak{su}(2,2|N)

in 3+1D thanks to

ak{su}(2,2)\simeqak{so}(4,2)

;

ak{sl}(4|N)

in 2+2D thanks to

ak{sl}(4,R)\simeqak{so}(3,3)

;

F(4)

in five dimensions

ak{osp}(8*|2N)

in 5+1D, thanks to the fact that spinor and fundamental representations of

ak{so}(8,C)

are mapped to each other by outer automorphisms.

Superconformal algebra in 3+1D

According to [1] [2] the superconformal algebra with

l{N}

supersymmetries in 3+1 dimensions is given by the bosonic generators

P\mu

,

D

,

M\mu\nu

,

K\mu

, the U(1) R-symmetry

A

, the SU(N) R-symmetry
i
T
j
and the fermionic generators

Q\alpha

,
\alpha
\overline{Q}
i
,
\alpha
S
i
and
\alphai
{\overline{S}}
. Here,

\mu,\nu,\rho,...

denote spacetime indices;

\alpha,\beta,...

left-handed Weyl spinor indices;
\alpha,\beta,...
right-handed Weyl spinor indices; and

i,j,...

the internal R-symmetry indices.

The Lie superbrackets of the bosonic conformal algebra are given by

[M\mu\nu,M\rho\sigma]\nu\rhoM\mu\sigma\mu\rhoM\nu\sigma\nu\sigmaM\rho\mu\mu\sigmaM\rho\nu

[M\mu\nu,P\rho]\nu\rhoP\mu\mu\rhoP\nu

[M\mu\nu,K\rho]\nu\rhoK\mu\mu\rhoK\nu

[M\mu\nu,D]=0

[D,P\rho]=-P\rho

[D,K\rho]=+K\rho

[P\mu,K\nu]=-2M\mu\nu+2η\mu\nuD

[Kn,Km]=0

[Pn,Pm]=0

where η is the Minkowski metric; while the ones for the fermionic generators are:

\left\{Q\alpha,

j
\overline{Q}
\beta

\right\}=2

j
\delta
i
\mu
\sigma
\alpha
\beta

P\mu

\left\{Q,Q\right\}=\left\{\overline{Q},\overline{Q}\right\}=0

\left\{

i,
S
\alpha
\overline{S}
\betaj

\right\}=2

i
\delta
j
\mu
\sigma
\alpha
\beta

K\mu

\left\{S,S\right\}=\left\{\overline{S},\overline{S}\right\}=0

\left\{Q,S\right\}=

\left\{Q,\overline{S}\right\}=\left\{\overline{Q},S\right\}=0

The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators:

[A,M]=[A,D]=[A,P]=[A,K]=0

[T,M]=[T,D]=[T,P]=[T,K]=0

But the fermionic generators do carry R-charge:

[A,Q]=-1
2

Q

[A,\overline{Q}]=1
2

\overline{Q}

[A,S]=1
2

S

[A,\overline{S}]=-1
2

\overline{S}

i
[T
j,Q

k]=-

i
\delta
k

Qj

k]=
[T
j,{\overline{Q}}
k
\delta
j

{\overline{Q}}i

k]=\delta
[T
j,S
k
j

Si

i
[T
j,\overline{S}

k]=-

i
\delta
k

\overline{S}j

Under bosonic conformal transformations, the fermionic generators transform as:

[D,Q]=-1
2

Q

[D,\overline{Q}]=-1
2

\overline{Q}

[D,S]=1
2

S

[D,\overline{S}]=1
2

\overline{S}

[P,Q]=[P,\overline{Q}]=0

[K,S]=[K,\overline{S}]=0

Superconformal algebra in 2D

See main article: super Virasoro algebra. There are two possible algebras with minimal supersymmetry in two dimensions; a Neveu–Schwarz algebra and a Ramond algebra. Additional supersymmetry is possible, for instance the N = 2 superconformal algebra.

See also

Notes and References

  1. Book: 10.1007/0-306-47056-X_17. Introduction to Rigid Supersymmetric Theories . Confinement, Duality, and Non-Perturbative Aspects of QCD . NATO Science Series: B . 2002 . West . P. C. . 368 . 453–476 . hep-th/9805055 . 0-306-45826-8 . 119413468 .
  2. Gates . S. J. . Grisaru . Marcus T. . Rocek . M. . Martin Rocek . Siegel . W. . Warren Siegel . 1983 . Superspace, or one thousand and one lessons in supersymmetry . Frontiers in Physics . 58 . 1–548 . hep-th/0108200 . 2001hep.th....8200G .