Solar cycle explained

The solar cycle, also known as the solar magnetic activity cycle, sunspot cycle, or Schwabe cycle, is a nearly periodic 11-year change in the Sun's activity measured in terms of variations in the number of observed sunspots on the Sun's surface. Over the period of a solar cycle, levels of solar radiation and ejection of solar material, the number and size of sunspots, solar flares, and coronal loops all exhibit a synchronized fluctuation from a period of minimum activity to a period of a maximum activity back to a period of minimum activity.

The magnetic field of the Sun flips during each solar cycle, with the flip occurring when the solar cycle is near its maximum. After two solar cycles, the Sun's magnetic field returns to its original state, completing what is known as a Hale cycle.

This cycle has been observed for centuries by changes in the Sun's appearance and by terrestrial phenomena such as aurora but was not clearly identified until 1843. Solar activity, driven by both the solar cycle and transient aperiodic processes, governs the environment of interplanetary space by creating space weather and impacting space- and ground-based technologies as well as the Earth's atmosphere and also possibly climate fluctuations on scales of centuries and longer.

Understanding and predicting the solar cycle remains one of the grand challenges in astrophysics with major ramifications for space science and the understanding of magnetohydrodynamic phenomena elsewhere in the universe.

The current scientific consensus on climate change is that solar variations only play a marginal role in driving global climate change, since the measured magnitude of recent solar variation is much smaller than the forcing due to greenhouse gases.

Definition

Solar cycles have an average duration of about 11 years. Solar maximum and solar minimum refer to periods of maximum and minimum sunspot counts. Cycles span from one minimum to the next.

Observational history

See main article: Solar observation.

The idea of a cyclical solar cycle was first hypothesized by Christian Horrebow based on his regular observations of sunspots made between 1761 and 1776 from the Rundetaarn observatory in Copenhagen, Denmark. In 1775, Horrebow noted how "it appears that after the course of a certain number of years, the appearance of the Sun repeats itself with respect to the number and size of the spots".[1] The solar cycle however would not be clearly identified until 1843 when Samuel Heinrich Schwabe noticed a periodic variation in the average number of sunspots after 17 years of solar observations.[2] Schwabe continued to observe the sunspot cycle for another 23 years, until 1867. In 1852, Rudolf Wolf designated the first numbered solar cycle to have started in February 1755 based on Schwabe's and other observations.[3] Wolf also created a standard sunspot number index, the Wolf number, which continues to be used today.

Between 1645 and 1715, very few sunspots were observed and recorded. This was first noted by Gustav Spörer and was later named the Maunder minimum after the wife-and-husband team Annie S. D. Maunder and Edward Walter Maunder who extensively researched this peculiar interval.[4]

In the second half of the nineteenth century Richard Carrington and Spörer independently noted the phenomena of sunspots appearing at different heliographic latitudes at different parts of the cycle. (See Spörer's law.) Alfred Harrison Joy would later describe how the magnitude at which the sunspots are "tilted"—with the leading spot(s) closer to the equator than the trailing spot(s)―grows with the latitude of these regions. (See Joy's law.)

The cycle's physical basis was elucidated by George Ellery Hale and collaborators, who in 1908 showed that sunspots were strongly magnetized (the first detection of magnetic fields beyond the Earth). In 1919 they identified a number of patterns that would collectively become known as Hale's law:

Hale's observations revealed that the complete magnetic cycle—which would later be referred to as a Hale cycle—spans two solar cycles, or 22 years, before returning to its original state (including polarity). Because nearly all manifestations are insensitive to polarity, the 11-year solar cycle remains the focus of research; however, the two halves of the Hale cycle are typically not identical: the 11-year cycles usually alternate between higher and lower sums of Wolf's sunspot numbers (the Gnevyshev-Ohl rule).

In 1961 the father-and-son team of Harold and Horace Babcock established that the solar cycle is a spatiotemporal magnetic process unfolding over the Sun as a whole. They observed that the solar surface is magnetized outside of sunspots, that this (weaker) magnetic field is to first order a dipole, and that this dipole undergoes polarity reversals with the same period as the sunspot cycle. Horace's Babcock Model described the Sun's oscillatory magnetic field as having a quasi-steady periodicity of 22 years.[5] It covered the oscillatory exchange of energy between toroidal and poloidal solar magnetic field components.

Cycle history

Sunspot numbers over the past 11,400 years have been reconstructed using carbon-14 and beryllium-10 isotope ratios.[6] The level of solar activity beginning in the 1940s is exceptional – the last period of similar magnitude occurred around 9,000 years ago (during the warm Boreal period).[7] [8] The Sun was at a similarly high level of magnetic activity for only ~10% of the past 11,400 years. Almost all earlier high-activity periods were shorter than the present episode. Fossil records suggest that the solar cycle has been stable for at least the last 700 million years. For example, the cycle length during the Early Permian is estimated to be 10.62 years[9] and similarly in the Neoproterozoic.[10] [11]

Major events and approximate dates! Event! Start! End
Homeric minimum[12] 750 BCE550 BCE
Oort minimum1040 CE1080 CE
Medieval maximum11001250
Wolf minimum12801350
Spörer Minimum14501550
Maunder Minimum16451715
Dalton Minimum17901820
Modern Maximum19332008

Until 2009, it was thought that 28 cycles had spanned the 309 years between 1699 and 2008, giving an average length of 11.04 years, but research then showed that the longest of these (1784–1799) may actually have been two cycles.[13] [14] If so then the average length would be only around 10.7 years. Since observations began cycles as short as 9 years and as long as 14 years have been observed, and if the cycle of 1784–1799 is double then one of the two component cycles had to be less than 8 years in length. Significant amplitude variations also occur.

Several lists of proposed historical "grand minima" of solar activity exist.[15] [16]

Recent cycles

Cycle 25

See main article: Solar cycle 25.

Solar cycle 25 began in December 2019.[17] Several predictions have been made for solar cycle 25[18] based on different methods, ranging from very weak to strong magnitude. A physics-based prediction relying on the data-driven solar dynamo and solar surface flux transport models seems to have predicted the strength of the solar polar field at the current minima correctly and forecasts a weak but not insignificant solar cycle 25 similar to or slightly stronger than cycle 24.[19] Notably, they rule out the possibility of the Sun falling into a Maunder-minimum-like (inactive) state over the next decade. A preliminary consensus by a solar cycle 25 Prediction Panel was made in early 2019.[20] The Panel, which was organized by NOAA's Space Weather Prediction Center (SWPC) and NASA, based on the published solar cycle 25 predictions, concluded that solar cycle 25 will be very similar to solar cycle 24. They anticipate that the solar cycle minimum before cycle 25 will be long and deep, just as the minimum that preceded cycle 24. They expect solar maximum to occur between 2023 and 2026 with a sunspot range of 95 to 130, given in terms of the revised sunspot number.

Cycle 24

See main article: Solar cycle 24. Solar cycle 24 began on 4 January 2008,[21] with minimal activity until early 2010.[22] [23] The cycle featured a "double-peaked" solar maximum. The first peak reached 99 in 2011 and the second in early 2014 at 101.[24] Cycle 24 ended in December 2019 after 11.0 years.

Cycle 23

See main article: Solar cycle 23. Solar cycle 23 lasted 11.6 years, beginning in May 1996 and ending in January 2008. The maximum smoothed sunspot number (monthly number of sunspots averaged over a twelve-month period) observed during the solar cycle was 120.8 (March 2000), and the minimum was 1.7.[25] A total of 805 days had no sunspots during this cycle.[26] [27] [28]

Phenomena

See main article: Solar phenomena. Because the solar cycle reflects magnetic activity, various magnetically driven solar phenomena follow the solar cycle, including sunspots, faculae/plage, network, and coronal mass ejections.

Sunspots

See main article: Sunspot. The Sun's apparent surface, the photosphere, radiates more actively when there are more sunspots. Satellite monitoring of solar luminosity revealed a direct relationship between the solar cycle and luminosity with a peak-to-peak amplitude of about 0.1%.[29] Luminosity decreases by as much as 0.3% on a 10-day timescale when large groups of sunspots rotate across the Earth's view and increase by as much as 0.05% for up to 6 months due to faculae associated with large sunspot groups.[30]

The best information today comes from SOHO (a cooperative project of the European Space Agency and NASA), such as the MDI magnetogram, where the solar "surface" magnetic field can be seen.

As each cycle begins, sunspots appear at mid-latitudes, and then move closer and closer to the equator until a solar minimum is reached. This pattern is best visualized in the form of the so-called butterfly diagram. Images of the Sun are divided into latitudinal strips, and the monthly-averaged fractional surface of sunspots is calculated. This is plotted vertically as a color-coded bar, and the process is repeated month after month to produce this time-series diagram.While magnetic field changes are concentrated at sunspots, the entire sun undergoes analogous changes, albeit of smaller magnitude.

Faculae and plage

See main article: Solar facula and Solar plage. Faculae are bright magnetic features on the photosphere. They extend into the chromosphere, where they are referred to as plage. The evolution of plage areas is typically tracked from solar observations in the Ca II K line (393.37 nm).[31] The amount of facula and plage area varies in phase with the solar cycle, and they are more abundant than sunspots by approximately an order of magnitude.[32] They exhibit a non linear relation to sunspots.[33] Plage regions are also associated with strong magnetic fields in the solar surface.[34] [35]

Solar flares and coronal mass ejections

See main article: Solar flare and Coronal mass ejection.

The solar magnetic field structures the corona, giving it its characteristic shape visible at times of solar eclipses. Complex coronal magnetic field structures evolve in response to fluid motions at the solar surface, and emergence of magnetic flux produced by dynamo action in the solar interior. For reasons not yet understood in detail, sometimes these structures lose stability, leading to solar flares and coronal mass ejections (CME). Flares consist of an abrupt emission of energy (primarily at ultraviolet and X-ray wavelengths), which may or may not be accompanied by a coronal mass ejection, which consists of injection of energetic particles (primarily ionized hydrogen) into interplanetary space. Flares and CME are caused by sudden localized release of magnetic energy, which drives emission of ultraviolet and X-ray radiation as well as energetic particles. These eruptive phenomena can have a significant impact on Earth's upper atmosphere and space environment, and are the primary drivers of what is now called space weather. Consequently, the occurrence of both geomagnetic storms[36] and solar energetic particle[37] events shows a strong solar cycle variation, peaking close to sunspot maximum.

The occurrence frequency of coronal mass ejections and flares is strongly modulated by the cycle. Flares of any given size are some 50 times more frequent at solar maximum than at minimum. Large coronal mass ejections occur on average a few times a day at solar maximum, down to one every few days at solar minimum. The size of these events themselves does not depend sensitively on the phase of the solar cycle. A case in point are the three large X-class flares that occurred in December 2006, very near solar minimum; an X9.0 flare on Dec 5 stands as one of the brightest on record.[38]

Patterns

Along with the approximately 11-year sunspot cycle, a number of additional patterns and cycles have been hypothesized.[39]

Waldmeier effect

The Waldmeier effect describes the observation that the maximum amplitudes of solar cycles are inversely proportional to the time between their solar minima and maxima. Therefore, cycles with larger maximum amplitudes tend to take less time to reach their maxima than cycles with smaller amplitudes.[40] This effect was named after Max Waldmeier who first described it.[41]

Gnevyshev–Ohl rule

See main article: Gnevyshev–Ohl rule. The Gnevyshev–Ohl rule describes the tendency for the sum of the Wolf number over an odd solar cycle to exceed that of the preceding even cycle.

Gleissberg cycle

The Gleissberg cycle describes an amplitude modulation of solar cycles with a period of about 70–100 years, or seven or eight solar cycles. It was named after Wolfgang Gleißberg.[42] [43] [44]

As pioneered by Ilya G. Usoskin and Sami Solanki, associated centennial variations in magnetic fields in the corona and heliosphere have been detected using carbon-14 and beryllium-10 cosmogenic isotopes stored in terrestrial reservoirs such as ice sheets and tree rings[45] and by using historic observations of geomagnetic storm activity, which bridge the time gap between the end of the usable cosmogenic isotope data and the start of modern satellite data.[46]

These variations have been successfully reproduced using models that employ magnetic flux continuity equations and observed sunspot numbers to quantify the emergence of magnetic flux from the top of the solar atmosphere and into the heliosphere,[47] showing that sunspot observations, geomagnetic activity and cosmogenic isotopes offer a convergent understanding of solar activity variations.

Suess cycle

The Suess cycle, or de Vries cycle, is a cycle present in radiocarbon proxies of solar activity with a period of about 210 years.It was named after Hans Eduard Suess and Hessel de Vries. Despite calculated radioisotope production rates being well correlated with the 400-year sunspot record, there is little evidence of the Suess cycle in the 400-year sunspot record by itself.

Other hypothesized cycles

Periodicity of solar activity with periods longer than the solar cycle of about 11 (22) years has been proposed, including:

Effects

Sun

Surface magnetism

Sunspots eventually decay, releasing magnetic flux in the photosphere. This flux is dispersed and churned by turbulent convection and solar large-scale flows. These transport mechanisms lead to the accumulation of magnetized decay products at high solar latitudes, eventually reversing the polarity of the polar fields (notice how the blue and yellow fields reverse in the Hathaway/NASA/MSFC graph above).

The dipolar component of the solar magnetic field reverses polarity around the time of solar maximum and reaches peak strength at the solar minimum.

Space

Spacecraft

CMEs (coronal mass ejections) produce a radiation flux of high-energy protons, sometimes known as solar cosmic rays. These can cause radiation damage to electronics and solar cells in satellites. Solar proton events also can cause single-event upset (SEU) events on electronics; at the same, the reduced flux of galactic cosmic radiation during solar maximum decreases the high-energy component of particle flux.

CME radiation is dangerous to astronauts on a space mission who are outside the shielding produced by the Earth's magnetic field. Future mission designs (e.g., for a Mars Mission) therefore incorporate a radiation-shielded "storm shelter" for astronauts to retreat to during such an event.

Gleißberg developed a CME forecasting method that relies on consecutive cycles.[57]

The increased irradiance during solar maximum expands the envelope of the Earth's atmosphere, causing low-orbiting space debris to re-enter more quickly.

Galactic cosmic ray flux

The outward expansion of solar ejecta into interplanetary space provides overdensities of plasma that are efficient at scattering high-energy cosmic rays entering the solar system from elsewhere in the galaxy. The frequency of solar eruptive events is modulated by the cycle, changing the degree of cosmic ray scattering in the outer solar system accordingly. As a consequence, the cosmic ray flux in the inner Solar System is anticorrelated with the overall level of solar activity.[58] This anticorrelation is clearly detected in cosmic ray flux measurements at the Earth's surface.

Some high-energy cosmic rays entering Earth's atmosphere collide hard enough with molecular atmospheric constituents that they occasionally cause nuclear spallation reactions. Fission products include radionuclides such as 14C and 10Be that settle on the Earth's surface. Their concentration can be measured in tree trunks or ice cores, allowing a reconstruction of solar activity levels into the distant past.[59] Such reconstructions indicate that the overall level of solar activity since the middle of the twentieth century stands amongst the highest of the past 10,000 years, and that epochs of suppressed activity, of varying durations have occurred repeatedly over that time span.

Atmospheric

Solar irradiance

See main article: Solar irradiance. The total solar irradiance (TSI) is the amount of solar radiative energy incident on the Earth's upper atmosphere. TSI variations were undetectable until satellite observations began in late 1978. A series of radiometers were launched on satellites since the 1970s.[60] TSI measurements varied from 1355 to 1375 W/m2 across more than ten satellites. One of the satellites, the ACRIMSAT was launched by the ACRIM group. The controversial 1989–1991 "ACRIM gap" between non-overlapping ACRIM satellites was interpolated by the ACRIM group into a composite showing +0.037%/decade rise. Another series based on the ACRIM data is produced by the PMOD group and shows a −0.008%/decade downward trend.[61] This 0.045%/decade difference can impact climate models. However, reconstructed total solar irradiance with models favor the PMOD series, thus reconciling the ACRIM-gap issue.[62] [63]

Solar irradiance varies systematically over the cycle,[64] both in total irradiance and in its relative components (UV vs visible and other frequencies). The solar luminosity is an estimated 0.07 percent brighter during the mid-cycle solar maximum than the terminal solar minimum. Photospheric magnetism appears to be the primary cause (96%) of 1996–2013 TSI variation.[65] The ratio of ultraviolet to visible light varies.[66]

TSI varies in phase with the solar magnetic activity cycle[67] with an amplitude of about 0.1% around an average value of about 1361.5 W/m2[68] (the "solar constant"). Variations about the average of up to −0.3% are caused by large sunspot groups and of +0.05% by large faculae and the bright network on a 7-10-day timescale[69] [70] Satellite-era TSI variations show small but detectable trends.[71] [72]

TSI is higher at solar maximum, even though sunspots are darker (cooler) than the average photosphere. This is caused by magnetized structures other than sunspots during solar maxima, such as faculae and active elements of the "bright" network, that are brighter (hotter) than the average photosphere. They collectively overcompensate for the irradiance deficit associated with the cooler, but less numerous sunspots.[73] The primary driver of TSI changes on solar rotational and solar cycle timescales is the varying photospheric coverage of these radiatively active solar magnetic structures.[74]

Energy changes in UV irradiance involved in production and loss of ozone have atmospheric effects. The 30 hPa atmospheric pressure level changed height in phase with solar activity during solar cycles 20–23. UV irradiance increase caused higher ozone production, leading to stratospheric heating and to poleward displacements in the stratospheric and tropospheric wind systems.[75]

Short-wavelength radiation

With a temperature of 5870 K, the photosphere emits a proportion of radiation in the extreme ultraviolet (EUV) and above. However, hotter upper layers of the Sun's atmosphere (chromosphere and corona) emit more short-wavelength radiation. Since the upper atmosphere is not homogeneous and contains significant magnetic structure, the solar ultraviolet (UV), EUV and X-ray flux varies markedly over the cycle.

The photo montage to the left illustrates this variation for soft X-ray, as observed by the Japanese satellite Yohkoh from after August 30, 1991, at the peak of cycle 22, to September 6, 2001, at the peak of cycle 23. Similar cycle-related variations are observed in the flux of solar UV or EUV radiation, as observed, for example, by the SOHO or TRACE satellites.

Even though it only accounts for a minuscule fraction of total solar radiation, the impact of solar UV, EUV and X-ray radiation on the Earth's upper atmosphere is profound. Solar UV flux is a major driver of stratospheric chemistry, and increases in ionizing radiation significantly affect ionosphere-influenced temperature and electrical conductivity.

Solar radio flux

Emission from the Sun at centimetric (radio) wavelength is due primarily to coronal plasma trapped in the magnetic fields overlying active regions.[76] The F10.7 index is a measure of the solar radio flux per unit frequency at a wavelength of 10.7 cm, near the peak of the observed solar radio emission. F10.7 is often expressed in SFU or solar flux units (1 SFU = 10−22 W m−2 Hz−1). It represents a measure of diffuse, nonradiative coronal plasma heating. It is an excellent indicator of overall solar activity levels and correlates well with solar UV emissions.

Sunspot activity has a major effect on long distance radio communications, particularly on the shortwave bands although medium wave and low VHF frequencies are also affected. High levels of sunspot activity lead to improved signal propagation on higher frequency bands, although they also increase the levels of solar noise and ionospheric disturbances. These effects are caused by impact of the increased level of solar radiation on the ionosphere.

10.7 cm solar flux could interfere with point-to-point terrestrial communications.[77]

Clouds

Speculations about the effects of cosmic-ray changes over the cycle potentially include:

Later papers showed that production of clouds via cosmic rays could not be explained by nucleation particles. Accelerator results failed to produce sufficient, and sufficiently large, particles to result in cloud formation;[86] [87] this includes observations after a major solar storm.[88] Observations after Chernobyl do not show any induced clouds.[89]

Terrestrial

Organisms

The impact of the solar cycle on living organisms has been investigated (see chronobiology). Some researchers claim to have found connections with human health.[90]

The amount of ultraviolet UVB light at 300 nm reaching the Earth's surface varies by a few percent over the solar cycle due to variations in the protective ozone layer. In the stratosphere, ozone is continuously regenerated by the splitting of O2 molecules by ultraviolet light. During a solar minimum, the decrease in ultraviolet light received from the Sun leads to a decrease in the concentration of ozone, allowing increased UVB to reach the Earth's surface.[91] [92]

Radio communication

See main article: Skywave. Skywave modes of radio communication operate by bending (refracting) radio waves (electromagnetic radiation) through the Ionosphere. During the "peaks" of the solar cycle, the ionosphere becomes increasingly ionized by solar photons and cosmic rays. This affects the propagation of the radio wave in complex ways that can either facilitate or hinder communications. Forecasting of skywave modes is of considerable interest to commercial marine and aircraft communications, amateur radio operators and shortwave broadcasters. These users occupy frequencies within the High Frequency or 'HF' radio spectrum that are most affected by these solar and ionospheric variances. Changes in solar output affect the maximum usable frequency, a limit on the highest frequency usable for communications.

Climate

Both long-term and short-term variations in solar activity are proposed to potentially affect global climate, but it has proven challenging to show any link between solar variation and climate.[93]

Early research attempted to correlate weather with limited success,[94] followed by attempts to correlate solar activity with global temperature. The cycle also impacts regional climate. Measurements from the SORCE's Spectral Irradiance Monitor show that solar UV variability produces, for example, colder winters in the U.S. and northern Europe and warmer winters in Canada and southern Europe during solar minima.[95]

Three proposed mechanisms mediate solar variations' climate impacts:

The solar cycle variation of 0.1% has small but detectable effects on the Earth's climate.[96] [97] [98] Camp and Tung suggest that solar irradiance correlates with a variation of 0.18 K ±0.08 K (0.32 °F ±0.14 °F) in measured average global temperature between solar maximum and minimum.[99]

Other effects include one study which found a relationship with wheat prices,[100] and another one that found a weak correlation with the flow of water in the Paraná River.[101] Eleven-year cycles have been found in tree-ring thicknesses and layers at the bottom of a lake hundreds of millions of years ago.

The current scientific consensus on climate change is that solar variations only play a marginal role in driving global climate change, since the measured magnitude of recent solar variation is much smaller than the forcing due to greenhouse gases.[102] Also, average solar activity in the 2010s was no higher than in the 1950s (see above), whereas average global temperatures had risen markedly over that period. Otherwise, the level of understanding of solar impacts on weather is low.

Solar variations also affect the orbital decay of objects in low Earth orbit (LEO) by altering the density of the upper thermosphere.[103]

Solar dynamo

See main article: Solar dynamo.

The 11-year solar cycle is thought to be one-half of a 22-year Babcock–Leighton solar dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields which is mediated by solar plasma flows which also provides energy to the dynamo system at every step. At solar-cycle maximum, the external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength, but an internal toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the Convection zone forces emergence of the toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle, a phenomenon described by Hale's law.[104] [105]

During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number. At solar minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare and the poloidal field is at maximum strength. During the next cycle, differential rotation converts magnetic energy back from the poloidal to the toroidal field, with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change in the polarity of the Sun's large-scale magnetic field.[106] [107]

Solar dynamo models indicate that plasma flux transport processes in the solar interior such as differential rotation, meridional circulation and turbulent pumping play an important role in the recycling of the toroidal and poloidal components of the solar magnetic field.[108] The relative strengths of these flux transport processes also determine the "memory" of the solar cycle that plays an important role in physics-based predictions of the solar cycle. In particular, utilized stochastically forced non-linear solar dynamo simulations to establish that the solar cycle memory is short, lasting over one cycle, thus implying accurate predictions are possible only for the next solar cycle and not beyond.[109] [110] This postulate of a short one cycle memory in the solar dynamo mechanism was later observationally verified.[111]

Although the tachocline has long been thought to be the key to generating the Sun's large-scale magnetic field, recent research has questioned this assumption. Radio observations of brown dwarfs have indicated that they also maintain large-scale magnetic fields and may display cycles of magnetic activity. The Sun has a radiative core surrounded by a convective envelope, and at the boundary of these two is the tachocline. However, brown dwarfs lack radiative cores and tachoclines. Their structure consists of a solar-like convective envelope that exists from core to surface. Since they lack a tachocline yet still display solar-like magnetic activity, it has been suggested that solar magnetic activity is only generated in the convective envelope.[112]

Speculated influence of the planets

A 2012 paper proposed that the torque exerted by the planets on a non-spherical tachocline layer deep in the Sun may synchronize the solar dynamo.[113] Their results were shown to be an artifact of the incorrectly applied smoothing method leading to aliasing.[114] Additional models incorporating the influence of planetary forces on the Sun have since been proposed.[115] However, the solar variability is known to be essentially stochastic and unpredictable beyond one solar cycle, which contradicts the idea of the deterministic planetary influence on solar dynamo.[116] Modern dynamo models are able to reproduce the solar cycle without any planetary influence.[19]

In 1974 the book The Jupiter Effect suggested that the alignment of the planets would alter the Sun's solar wind and, in turn, Earth's weather, culminating in multiple catastrophes on March 10, 1982. None of the catastrophes occurred. In 2023, a paper by Cionco et al. demonstrated the improbability that the suspected tidal effect on the Sun driven by Venus and Jupiter were significant on whole solar tidal generating potential.[117]

References

General references

External links

Notes and References

  1. Karoff . Christoffer . Jørgensen . Carsten Sønderskov . Senthamizh Pavai . V. . Arlt . Rainer . 2019-06-12 . Christian Horrebow's Sunspot Observations – II. Construction of a Record of Sunspot Positions . Solar Physics . 294 . 6 . 77. 10.1007/s11207-019-1466-y . 1906.10895 . 2019SoPh..294...78K . 189841594 .
  2. Schwabe . Sonnenbeobachtungen im Jahre 1843 . Astronomische Nachrichten . 1843 . 21 . 233–236 . Observations of the sun in the year 1843 . de. From page 235: "Vergleicht man nun die Zahl der Gruppen und der flecken-freien Tage mit einander, so findet man, dass die Sonnenflecken eine Periode von ungefähr 10 Jahren hatten ... " (If one compares the number of groups [of sunspots] and the sunspot-free days with one another, then one finds that the sunspots had a period of about 10 years ...)
  3. Wolf . R. . Neue untersuchungen über die periode der sonnenflecken und ihre bedeutung . Mittheilungen der Naturforschenden Gesellschaft in Bern . 1852 . 255 . 249–270 . New investigations regarding the period of sunspots and its significance. de.
  4. John A. Eddy. Eddy. John A.. The Maunder Minimum. Science. 192. 4245. 1189–1202. June 1976. 17771739. 10.1126/science.192.4245.1189 . 1742583 . 1976Sci...192.1189E. 33896851.
  5. Web site: Sunspot Number graphics. Solar Influences Data Analysis Center . Royal Observatory of Belgium.
  6. C.J. . Wu. N. . Krivova. S.K.. Solanki. I.G.. Usoskin. Solar total and spectral irradiance reconstruction over the last 9000 years. Astronomy & Astrophysics . 620 . A120 . 2018 . 10.1051/0004-6361/201832956. 1811.03464.
  7. Sami K. . Solanki . Sami Solanki . Ilya G. . Usoskin . Bernd . Kromer . Manfred . Schüssler . Jürg . Beer . Unusual activity of the Sun during recent decades compared to the previous 11,000 years . Nature . 431 . 2004 . 1084–1087 . 10.1038/nature02995 . 17 April 2007 . 15510145 . 7012 . 2004Natur.431.1084S . 4373732 ., Web site: 11,000 Year Sunspot Number Reconstruction . Global Change Master Directory . 2005-03-11 . 2015-11-02 . https://web.archive.org/web/20151102112535/http://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=GCMD&KeywordPath=%5BParameters%3ACategory%3D%27EARTH+SCIENCE%27%2CTopic%3D%27SUN-EARTH+INTERACTIONS%27%2CTerm%3D%27SOLAR+ACTIVITY%27%2CVariable%3D%27SUNSPOTS%27%5D&OrigMetadataNode=GCMD&EntryId=NOAA_NCDC_PALEO_2005-015&MetadataView=Brief&MetadataType=0&lbnode=gcmd3b .
  8. Ilya G. . Usoskin . Ilya G. Usoskin. Sami K. . Solanki . Manfred . Schüssler . Kalevi . Mursula . Katja . Alanko . Sami Solanki . A Millennium Scale Sunspot Number Reconstruction: Evidence For an Unusually Active Sun Since the 1940s . . 91 . 2003 . astro-ph/0310823 . 21 . 10.1103/PhysRevLett.91.211101 . 14683287 . 211101 . 2003PhRvL..91u1101U. 20754479 .
  9. Ludwig . Luthardt . Ronny . Rößler . Fossil forest reveals sunspot activity in the early Permian . . February 2017 . 45 . 2 . 279 . 10.1130/G38669.1 . 2017Geo....45..279L . 132999292 .
  10. Li . Pengbo . etal . Sunspot cycles recorded in siliciclastic biolaminites at the dawn of the Neoproterozoic Sturtian glaciation in South China . Precambrian Research . 315 . 75–91 . Sep 2018 . 10.1016/j.precamres.2018.07.018. 2018PreR..315...75L . 135344975 .
  11. Michael Marshall . Rock layers show our sun has been in same cycle for 700 million years . New Scientist . Aug 18, 2018 .
  12. Regional atmospheric circulation shifts induced by a grand solar minimum . . 2 April 2012 . Celia Martin-Puertas . Katja Matthes . Achim Brauer . Raimund Muscheler . Felicitas Hansen . Christof Petrick . Ala Aldahan . Göran Possnert . Bas van Geel . 5 . 397–401 . 10.1038/ngeo1460 . 6 . 2012NatGe...5..397M.
  13. I. G. . Usoskin . Ilya G. Usoskin. K. . Mursula . R. . Arlt . G. A. . Kovaltsov . A solar cycle lost in 1793–1800: Early sunspot observations resolve the old mystery . The Astrophysical Journal . 700 . 2 . L154 . 2009 . 10.1088/0004-637X/700/2/L154 . 2009ApJ...700L.154U . 0907.0063. 14882350 .
  14. News: Centuries-old sketches solve sunspot mystery . New Scientist . 10 . 1 Aug 2009 .
  15. Ilya G. . Usoskin . Ilya G. Usoskin. Sami K. . Solanki . Gennady A. . Kovaltsov . Grand minima and maxima of solar activity: New observational constraints . Astron. Astrophys. . 471 . 1 . 301–309 . 10.1051/0004-6361:20077704 . 2007 . 2007A&A...471..301U . 0706.0385. 7742132 .
  16. Brauer. Achim. Possnert. Göran. Aldahan. Ala. Błaszkiewicz. Mirosław. Słowinski. Michał. Ott. Florian. Dräger. Nadine. Mekhaldi. Florian. Adolphi. Florian. 2018-05-31. Synchronizing 10Be in two varved lake sediment records to IntCal13 14C during three grand solar minima. Climate of the Past. en. 14. 5. 687–696. 10.5194/cp-14-687-2018. 1814-9324. 2018CliPa..14..687C. free. 21.11116/0000-0003-2C5D-5. free.
  17. Web site: Hello Solar Cycle 25. National Weather Service. 15 September 2020.
  18. for example: Web site: ADS search for "solar sunspot cycle 25 prediction" . 17 March 2020.
  19. Bhowmik . Prantika . Nandy . Dibyendu . Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions . Nature Communications . 6 December 2018 . 9 . 1 . 5209 . 10.1038/s41467-018-07690-0 . 30523260 . 6283837 . 1909.04537 . 2018NatCo...9.5209B . en . 2041-1723. free .
  20. Web site: Solar Cycle 25 Preliminary Forecast . NOAA / NWS Space Weather Prediction Center.
  21. Bernhard Fleck . 14 January 2008 . SOHO: the new solar cycle starts with a 'bang' . European Space Agency . 2017-05-11 . en-GB.
  22. News: Solar Cycle 24 begins . 2008-01-10 . Tony Phillips . NASA . 2010-05-29 . 2021-02-28 . https://web.archive.org/web/20210228054909/https://science.nasa.gov/science-news/science-at-nasa/2008/10jan_solarcycle24/ .
  23. News: As the Sun Awakens, NASA Keeps a Wary Eye on Space Weather . 2010-06-04 . Tony Phillips . NASA . 2013-05-18 . 2021-03-20 . https://web.archive.org/web/20210320221857/https://science.nasa.gov/science-news/science-at-nasa/2010/04jun_swef .
  24. Web site: Solar Cycle Progression . NOAA / NWS Space Weather Prediction Center . 2015-07-06.
  25. Web site: Sunspot Number | SILSO . www.sidc.be.
  26. Web site: Spotless Days .
  27. Web site: What's wrong with the Sun? (Nothing) more information: Spotless Days . https://web.archive.org/web/20080714032353/https://science.nasa.gov/headlines/y2008/11jul_solarcycleupdate.htm . 2008-07-14.
  28. Web site: Solaemon's Spotless Days Page . 2015-08-15 . 2017-07-22 . https://web.archive.org/web/20170722234836/http://users.telenet.be/j.janssens/Spotless/Spotless.html .
  29. Willson. Richard C.. H.S. Hudson. 1991. The Sun's luminosity over a complete solar cycle. Nature. 351. 6321. 42–4. 10.1038/351042a0. 1991Natur.351...42W. 4273483.
  30. Willson RC, Gulkis S, Janssen M, Hudson HS, Chapman GA . Observations of Solar Irradiance Variability. Science. 211. 4483. 700–2. February 1981. 17776650. 10.1126/science.211.4483.700. 1981Sci...211..700W.
  31. Chatzistergos . Theodosios . Krivova . Natalie A. . Ermolli . Ilaria . 2022-11-17 . Full-disc Ca ii K observations—A window to past solar magnetism . Frontiers in Astronomy and Space Sciences . 9 . 1038949 . 10.3389/fspas.2022.1038949 . 2210.13285 . 2022FrASS...938949C . 2296-987X. free .
  32. Chatzistergos T, Ermolli I, Krivova NA, Solanki SK, Banerjee D, Barata T, Belik M, et al. . Analysis of full-disc Ca II K spectroheliograms – III. Plage area composite series covering 1892–2019. Astronomy and Astrophysics. 639. A88. July 2020. 10.1051/0004-6361/202037746. 2005.01435 . 2020A&A...639A..88C. 218487277 .
  33. Chatzistergos . Theodosios . Ermolli . Ilaria . Krivova . Natalie A. . Barata . Teresa . Carvalho . Sara . Malherbe . Jean-Marie . November 2022 . Scrutinising the relationship between plage areas and sunspot areas and numbers . Astronomy & Astrophysics . 667 . A167 . 10.1051/0004-6361/202244913 . 2209.07077 . 2022A&A...667A.167C . 252280541 . 0004-6361.
  34. Chatzistergos . Theodosios . Ermolli . Ilaria . Solanki . Sami K. . Krivova . Natalie A. . Giorgi . Fabrizio . Yeo . Kok Leng . June 2019 . Recovering the unsigned photospheric magnetic field from Ca II K observations . Astronomy & Astrophysics . 626 . A114 . 10.1051/0004-6361/201935131 . 1905.03453 . 2019A&A...626A.114C . 148571864 . 0004-6361.
  35. Babcock . Horace W. . Babcock . Harold D. . March 1955 . The Sun's Magnetic Field, 1952–1954. . The Astrophysical Journal . en . 121 . 349 . 10.1086/145994 . 1955ApJ...121..349B . 0004-637X.
  36. Owens . Mathew J. . Lockwood . Mike . Barnard . Luke A. . Scott . Chris J. . Haines . Carl . Macneil . Allan . 2021-05-20 . Extreme Space-Weather Events and the Solar Cycle . Solar Physics . en . 296 . 5 . 82 . 10.1007/s11207-021-01831-3 . 2021SoPh..296...82O . 236402345 . 1573-093X. free .
  37. Owens . Mathew J. . Barnard . Luke A. . Pope . Benjamin J. S. . Lockwood . Mike . Usoskin . Ilya . Asvestari . Eleanna . 2022-08-19 . Solar Energetic-Particle Ground-Level Enhancements and the Solar Cycle . Solar Physics . en . 297 . 8 . 105 . 10.1007/s11207-022-02037-x . 2207.12787 . 2022SoPh..297..105O . 251066764 . 1573-093X.
  38. The Most Powerful Solar Flares Ever Recorded . Spaceweather.com .
  39. David H. Hathaway, "The Solar Cycle", Living Reviews in Solar Physics, March 2010, Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany. ISSN1614-4961 (accessed 19 July 2015)
  40. Du . Zhan-Le . Wang . Hua-Ning . He . Xiang-Tao . 2006 . The Relation between the Amplitude and the Period of Solar Cycles . Chinese Journal of Astronomy and Astrophysics . 6 . 4. 489–494 . 2006ChJAA...6..489D . 10.1088/1009-9271/6/4/12. 73563204 . free .
  41. [Max Waldmeier|Waldmeier M.]
  42. C. P.. Sonett. S. A.. Finney. A.. Berger. The Spectrum of Radiocarbon. Philosophical Transactions of the Royal Society A. 330. 1615. 413–26. 24 April 1990. 10.1098/rsta.1990.0022. 1990RSPTA.330..413S. 123641430.
  43. Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model. Nature. 438. 208–11. 10 November 2005. 10.1038/nature04121. 16281042. Braun. H. Christl. M. Rahmstorf. S. Ganopolski. A. Mangini. A. Kubatzki. C. Roth. K. Kromer. B. 7065. 2005Natur.438..208B. 4346459.
  44. David H.. Hathaway. Robert M.. Wilson. What the Sunspot Record Tells Us About Space Climate. Solar Physics. 224. 1–2. 2004. 5–19. 10.1007/s11207-005-3996-8. 19 April 2007. https://web.archive.org/web/20060104223339/http://science.msfc.nasa.gov/ssl/pad/solar/papers/hathadh/HathawayWilson2004.pdf. 4 January 2006. 2004SoPh..224....5H. 55971262.
  45. Usoskin I.G.. Ilya G. Usoskin . A History of Solar Activity over Millennia. Living Reviews in Solar Physics. 14. 3. 3. 2017. 10.1007/s41116-017-0006-9. 2017LRSP...14....3U . 0810.3972. 195340740. PDF Copy
  46. Lockwood M.. Reconstruction and Prediction of Variations in the Open Solar Magnetic Flux and Interplanetary Conditions. Living Reviews in Solar Physics. 10. 4. 4. 2013. 10.12942/lrsp-2013-4. 2013LRSP...10....4L. free. PDF Copy
  47. Owens M.J.. Forsyth R.J.. amp. The Heliospheric Magnetic Field. Living Reviews in Solar Physics. 10. 5. 5. 2013. 10.12942/lrsp-2013-5. free . 2013LRSP...10....5O. 1002.2934. 122870891.
  48. Web site: The Sun and Climate . U.S. Geological Survey . Fact Sheet 0095-00 . 2015-11-17.
  49. S. S. . Vasiliev . V. A. . Dergachev . The ~ 2400-year cycle in atmospheric radiocarbon concentration: bispectrum of 14C data over the last 8000 years . Annales Geophysicae . 20 . 1 . 115–20 . 2002 . 10.5194/angeo-20-115-2002 . 2002AnGeo..20..115V . free.
  50. Usoskin IG, Gallet Y, Lopes F, Kovaltsov GA, Hulot G . Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima . Astron. Astrophys. . 587 . A150 . 10.1051/0004-6361/201527295 . 1602.02483 . 2016A&A...587A.150U . 2016 . 55007495.
  51. Scafetta, Nicola . Nicola Scafetta. Milani, Franco. Bianchini, Antonio. Ortolani, Sergio. On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth-Science Reviews . 162 . 2016 . 24–43 . 10.1016/j.earscirev.2016.09.004 . 1610.03096 . 2016ESRv..162...24S . 119155024.
  52. The Sun as a low-frequency harmonic oscillator.. Radiocarbon. 2006-03-31. 0033-8222. 199–205. 34. 2. 10.2458/azu_js_rc.34.1450. Paul E.. Damon. John L.. Jirikowic.
  53. Damon, Paul E., and Sonett, Charles P., "Solar and terrestrial components of the atmospheric C-14 variation spectrum," In The Sun in Time, Vol. 1, pp. 360–388, University of Arizona Press, Tucson AZ (1991). Abstract (accessed 16 July 2015)
  54. see table in Web site: Solar Variability: climatic change resulting from changes in the amount of solar energy reaching the upper atmosphere.. Introduction to Quaternary Ecology. 2015-07-16. https://web.archive.org/web/20050320225607/http://www.geo.arizona.edu/palynology/geos462/20climsolar.html. 2005-03-20.
  55. Past Interglacials Working Group of PAGES . 2016 . Interglacials of the last 800,000 years . Reviews of Geophysics . en . 54 . 1 . 162–219 . 10.1002/2015RG000482 . 8755-1209. 10261/168880 . free .
  56. Viaggi . P. . 2021 . Quantitative impact of astronomical and sun-related cycles on the Pleistocene climate system from Antarctica records . Quaternary Science Advances . 4 . 100037 . 10.1016/j.qsa.2021.100037 . 2666-0334.
  57. Book: Wolfgang Gleißberg . Die Häufigkeit der Sonnenflecken . Ahademie Verlag . Berlin . 1953 . de.
  58. Potgeiter. M.. Solar Modulation of Cosmic Rays. Living Reviews in Solar Physics. 10. 1. 3. 10.12942/lrsp-2013-3. 1306.4421 . 2013LRSP...10....3P . 2013. free . 56546254.
  59. Sami K.. Solanki . Sami Solanki . Ilya G.. Usoskin . Bernd . Kromer . Manfred. Schüssler . Jürg . Beer . Unusual activity of the Sun during recent decades compared to the previous 11,000 years . Nature . 431 . 2004 . 1084–7 . 10.1038/nature02995 . 15510145 . 7012 . 2004Natur.431.1084S . 4373732 .
  60. Magnitudes and timescales of total solar irradiance variability . Kopp G . Journal of Space Weather and Space Climate . 2016-07-01 . 10.1051/swsc/2016025 . 6 . A30. 1606.05258 . 2016JSWSC...6A..30K. free .
  61. ACRIM3 and the Total Solar Irradiance database . Richard C. Willson . Astrophysics and Space Science . 2014-05-16 . 10.1007/s10509-014-1961-4 . 352 . 2 . 341–352. 2014Ap&SS.352..341W . free .
  62. ACRIM-gap and total solar irradiance revisited: Is there a secular trend between 1986 and 1996? . Krivova NA, Solanki SK, Wenzler T . Geophysical Research Letters . 2009-10-01 . 10.1029/2009GL040707 . 36 . 20 . L20101. 0911.3817 . 2009GeoRL..3620101K . free .
  63. Amdur . T. . Huybers . P. . 2023-08-16 . A Bayesian Model for Inferring Total Solar Irradiance From Proxies and Direct Observations: Application to the ACRIM Gap . Journal of Geophysical Research: Atmospheres . en . 128 . 15 . 10.1029/2023JD038941 . 2023JGRD..12838941A . 260264050 . 2169-897X.
  64. Willson . R.C. . etal . 1981 . Observations of Solar Irradiance Variability . Science . 211 . 4483. 700–2 . 10.1126/science.211.4483.700 . 17776650. 1981Sci...211..700W .
  65. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI and SDO/HMI observations . K.L. Yeo . etal . Astronomy & Astrophysics . 2014-09-23 . 10.1051/0004-6361/201423628 . 2014A&A...570A..85Y . 570 . A85. 1408.1229 . 56424234 .
  66. Nature . 467 . 7316 . An influence of solar spectral variations on radiative forcing of climate . October 6, 2010. 10.1038/nature09426 . 20930841 . 696–9. 2010Natur.467..696H . Haigh . J. D . Winning . A. R . Toumi . R . Harder . J. W . 10044/1/18858 . 4320984 . free .
  67. Willson RC. Hudson HS . The Sun's luminosity over a complete solar cycle . Nature . 351 . 6321 . 42–4 . 1991 . 10.1038/351042a0. 1991Natur.351...42W . 4273483 .
  68. 10.1007/s10509-014-1961-4 . 2014Ap&SS.352..341W . 352 . ACRIM3 and the Total Solar Irradiance database . 2014 . Astrophysics and Space Science . 341–352 . Willson . Richard C.. 2 . free .
  69. Willson R.C.. Gulkis S.. Janssen M. . Hudson H.S.. Chapman G.A. . Observations of solar irradiance variability . Science . 211 . 4483 . 700–2 . 1981 . 10.1126/science.211.4483.700 . 17776650. 1981Sci...211..700W .
  70. Web site: ACRIM project web page . Total Solar Irradiance Graph from ACRIM page . https://web.archive.org/web/20151017073029/http://acrim.com/Acrim1%20Results.htm . 2015-10-17 . 2015-11-17.
  71. Willson R.C.. Mordvinov A.V. . Secular total solar irradiance trend during solar cycles 21–23 . Geophys. Res. Lett. . 30 . 5 . 1199 . 2003 . 10.1029/2002GL016038 . 2003GeoRL..30.1199W. 55755495 . free .
  72. Scafetta N. . Willson R.C. . ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model . Geophys. Res. Lett. . 36 . 5. L05701 . 2009 . 10.1029/2008GL036307 . 2009GeoRL..36.5701S . 7160875 . free .
  73. Chatzistergos T, Krivova NA, Ermolli I, Kok Leng Y, Mandal S, Solanki SK, Kopp G, Malherbe JM . Reconstructing solar irradiance from historical Ca II K observations. I. Method and its validation . Astronomy and Astrophysics . 656 . A104 . 2021-12-01 . 10.1051/0004-6361/202141516 . 2109.05844 . 2021A&A...656A.104C. free .
  74. Solanki SK, Schuessler M, Fligge M . Secular variation of the Sun's magnetic flux . Astronomy and Astrophysics . 383 . 706–712. 2002-02-01 . 2 . 10.1051/0004-6361:20011790 . 2002A&A...383..706S . free .
  75. The Impact of Solar Variability on Climate. Haigh. J D. Science. May 17, 1996. 272. 981–984. 10.1126/science.272.5264.981. 8662582. 5264. 1996Sci...272..981H . 140647147.
  76. Tapping K.F. . Recent solar radio astronomy at centimeter wavelength: the temporal variability of the 10.7-cm flux . J. Geophys. Res. . 92 . D1 . 829–838 . 1987 . 10.1029/JD092iD01p00829 . 1987JGR....92..829T.
  77. The Effect of 10.7 cm Solar Radiation on 2.4 GHz Digital Spread Spectrum Communications . NARTE News . 17 . 3 . July–October 1999 .
  78. Book: Atmospheric Ionization and Clouds as Links Between Solar Activity and Climate. Brian A.. Tinsley. Fangqun. Yu. 2004. 141. 321–339. Judit M.. Pap. Peter. Fox. Solar Variability and its Effects on Climate. 978-0-87590-406-1. http://www.utdallas.edu/physics/pdf/Atmos_060302.pdf. American Geophysical Union. Geophysical monograph series. 2004GMS...141..321T. 10.1029/141GM22. 10.1.1.175.5237. 2015-08-10. 2007-06-04. https://web.archive.org/web/20070604183050/http://www.utdallas.edu/physics/pdf/Atmos_060302.pdf. Web site: Department of Physics – the University of Texas at Dallas . 2015-08-10 . https://web.archive.org/web/20150815202558/http://www.utdallas.edu/physics/ . 2015-08-15 .
  79. CERN's CLOUD experiment provides unprecedented insight into cloud formation . . 25 August 2011 . 12 November 2016.
  80. Kumar . Vinay . Dhaka . Surendra K. . Hitchman . Matthew H. . Yoden . Shigeo . 2023-03-06 . The influence of solar-modulated regional circulations and galactic cosmic rays on global cloud distribution . Scientific Reports . en . 13 . 1 . 3707 . 10.1038/s41598-023-30447-9 . 2045-2322 . 9988889 . 36878955. 2023NatSR..13.3707K .
  81. On climate response to changes in the cosmic ray flux and radiative budget. Journal of Geophysical Research. 110. 2005. 10.1029/2004JA010866. 17 June 2011. Shaviv, Nir J. A08105. A08105. 2005JGRA..110.8105S. physics/0409123. 16364672.
  82. Cosmoclimatology: a new theory emerges. Astronomy & Geophysics. 48. 2007. 1.18–1.24. 10.1111/j.1468-4004.2007.48118.x. Svensmark, Henrik. 1. 2007A&G....48a..18S. free.
  83. Henrik. Svensmark. Henrik Svensmark. Influence of Cosmic Rays on Earth's Climate. Physical Review Letters. 1998. 81. 22. 5027–5030. 10.1103/PhysRevLett.81.5027. 17 June 2011. 1998PhRvL..81.5027S. 10.1.1.522.585.
  84. Celestial driver of Phanerozoic climate?. Geological Society of America. 13. 2003. 4. 10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2. Shaviv, Nir J . Veizer, Ján . amp . 7. free.
  85. Sun, B.. Bradley, R.. Solar influences on cosmic rays and cloud formation: A reassessment. Journal of Geophysical Research. 107. D14. 4211. 2002. 10.1029/2001jd000560. 2002JGRD..107.4211S . free.
  86. Pierce, J.. Adams, P.. Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?. Geophysical Research Letters. 36. 9. 36. 2009. 10.1029/2009gl037946. 2009GeoRL..36.9820P . 15704833. free.
  87. Snow-Kropla, E.. etal. Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties. Atmospheric Chemistry and Physics. 11. 8. Apr 2011. 4001. 10.5194/acp-11-4001-2011. 2011ACP....11.4001S . free.
  88. Erlykin, A.. etal. A review of the relevance of the 'CLOUD' results and other recent observations to the possible effect of cosmic rays on the terrestrial climate. Meteorology and Atmospheric Physics. 121. 3. 137. Aug 2013. 10.1007/s00703-013-0260-x. 1308.5067 . 2013MAP...121..137E . 118515392.
  89. Sloan, T.. Wolfendale, A.. Arnold Wolfendale. Cosmic Rays and Global Warming. 30TH INTERNATIONAL COSMIC RAY CONFERENCE, Merida, Mexico. Jun 2007.
  90. Neuroendocrinology Letters . Cross-spectrally coherent ~10.5- and 21-year biological and physical cycles, magnetic storms and myocardial infarctions . 2000 . 233–258 . 21 . 3 . 11455355 . Cornélissen . G . Otsuka . K . Watanabe . Y . Katinas . GS . Burioka . N . Delyukov . A . Gorgo . Y . Zhao . Z . Halberg . F . https://web.archive.org/web/20080729003640/http://www.nel.edu/21_3/3StoryBeh_Halb.htm . 2008-07-29 .
  91. Book: https://www.nap.edu/read/4778/chapter/5#66 . Solar Influences on Global Change . Solar Variations, Ozone, and the Middle Atmosphere . National Research Council . 1994 . 66–68 . Washington DC . National Academies Press . 10.17226/4778. 2060/19950005971 . 978-0-309-05148-4 .
  92. E . Echer . VWJH . Kirchhoff . Y . Sahai . N . Paes Leme . A study of the solar cycle signal on total ozone over low-latitude Brazilian observation stations . Advances in Space Research . 27 . 12 . 2001 . 1983–1986 . 10.1016/S0273-1177(01)00270-8. 2001AdSpR..27.1983E .
  93. Joanna D. Haigh "The Sun and the Earth's Climate", Living Reviews in Solar Physics (access date 31 January 2012)
  94. Book: Weart, Spencer . Spencer Weart . The Discovery of Global Warming . Changing Sun, Changing Climate? . Harvard University Press . 2003 . 978-0-674-01157-1 . http://www.aip.org/history/climate/solar.htm . 17 April 2008 . 4 August 2011 . https://web.archive.org/web/20110804232058/http://www.aip.org/history/climate/ .
  95. Solar forcing of winter climate variability in the Northern Hemisphere . . October 9, 2011 . Ineson S. . Scaife A.A. . Knight J.R.. Manners J.C. . Dunstone N.J.. Gray L.J. . Haigh J.D. . 4 . 753–7 . 10.1038/ngeo1282 . 11. 2011NatGe...4..753I . 10044/1/18859 . free .
  96. Labitzke K.. Matthes K. . Eleven-year solar cycle variations in the atmosphere: observations, mechanisms and models . The Holocene . 13 . 3 . 311–7 . 2003 . 10.1191/0959683603hl623rp . 2003Holoc..13..311L. 129100529 .
  97. Pablo J.D. Mauas & Andrea P. Buccino. "Long-term solar activity influences on South American rivers" page 5. Journal of Atmospheric and Solar-Terrestrial Physics on Space Climate, March 2010. Accessed: 20 September 2014.
  98. Zanchettin . D. . Rubino . A. . Traverso . P. . Tomasino . M. . 2008 . [Impact of variations in solar activity on hydrological decadal patterns in northern Italy] . Journal of Geophysical Research . 113 . D12 . D12102 . 10.1029/2007JD009157 . 2008JGRD..11312102Z. 54975234 . free .
  99. C. D. Camp. K. K. Tung. amp . Geophysical Research Letters . 34 . 14. L14703 . Surface warming by the solar cycle as revealed by the composite mean difference projection . 2007 . 10.1029/2007GL030207 . 2007GeoRL..3414703C. 16596423. free.
  100. https://www.newscientist.com/article.ns?id=dn6680 Sunspot activity impacts on crop success
  101. https://www.newscientist.com/channel/earth/mg20026814.100-sunspot-activity-may-be-linked-to-rainfall.html "Sunspot activity may be linked to rainfall"
  102. Book: J.T. . Houghton . John T. Houghton . Y. . Ding . D.J. . Griggs . M. . Noguer . Climate Change 2001: Working Group I: The Scientific Basis . 2001 . . 6.11 Total Solar Irradiance—Figure 6.6: Global, annual mean radiative forcings (1750 to present) . http://www.grida.no/climate/ipcc_tar/wg1/fig6-6.htm . 15 April 2007.
    see also the IPCC Fourth Assessment Report, in which the magnitude of variation in solar irradiance was revised downward, although the evidence of connections between solar variation and certain aspects of climate increased over the same time period: Assessment Report-4, Working group 1, chapter 2
  103. Molaverdikhani. Karan. Ajabshirizadeh, A.. Complexity of the Earth's space–atmosphere interaction region (SAIR) response to the solar flux at 10.7 cm as seen through the evaluation of five solar cycle two-line element (TLE) records. Advances in Space Research. 2016. 58. 6. 924–937. 10.1016/j.asr.2016.05.035 . 2016AdSpR..58..924M. free.
  104. Hale . G. E. . Ellerman . F. . Nicholson . S. B. . Joy . A. H. . The Magnetic Polarity of Sun-Spots . The Astrophysical Journal . 49 . 153 . 1919 . 10.1086/142452 . 1919ApJ....49..153H.
  105. News: 4 January 2008 . NASA Satellites Capture Start of New Solar Cycle . . 10 July 2009.
  106. News: 16 February 2001 . Sun flips magnetic field . https://web.archive.org/web/20051115051328/http://archives.cnn.com/2001/TECH/space/02/16/sun.flips/index.html . 15 November 2005 . . 11 July 2009. http://www.cnn.com/2001/TECH/space/02/16/sun.flips/index.html
  107. Web site: Phillips . T. . 15 February 2001 . The Sun Does a Flip . https://web.archive.org/web/20011104023531/https://science.nasa.gov/headlines/y2001/ast15feb_1.htm . 4 November 2001 . . 11 July 2009.
  108. Hazra . Soumitra . Nandy . Dibyendu . 2016 . A Proposed Paradigm for Solar Activity Dynamics Mediated via Turbulent Pumping of Magnetic Flux in Babcock-Leighton-type Solar Dynamics . The Astrophysical Journal . 832 . 1 . 9 . 10.3847/0004-637X/832/1/9 . free. 1608.08167 .
  109. Yeates . Anthony R. . Nandy . Dibyendu . Mackay . Duncan H. . 2008 . Exploring the Physical Basis of Solar Cycle Predictions: Flux Transport Dynamics and Persistence of Memory in Advection- versus Diffusion-dominated Solar Convection Zones . The Astrophysical Journal . 673 . 1 . 544 . 10.1086/524352 . free. 0709.1046 .
  110. Karak . Bidya Binay . Nandy . Dibyendu . 2012 . Turbulent Pumping of Magnetic Flux Reduxes Solar Cycle Memory and thus Impacts Predictability of the Sun's Activity . The Astrophysical Journal . 761 . 1 . L13 . 10.1088/2041-8205/761/1/L13 . free. 1206.2106 .
  111. Solar Cycle Propagation, Memory, and Prediction: Insights from a century of magnetic proxies . Muñoz-Jaramillo . Andrés . Dasi-Espuig . María . Balmaceda . Laura A. . DeLuca . Edward E. . 2013 . The Astrophysical Journal Letters . 767 . 2 . L25 . 10.1088/2041-8205/767/2/L25 . free. 1304.3151 .
  112. Route . Matthew . The Discovery of Solar-like Activity Cycles Beyond the End of the Main Sequence? . The Astrophysical Journal Letters . October 20, 2016 . 830 . 2 . 27 . 1609.07761 . 2016ApJ...830L..27R . 119111063 . 10.3847/2041-8205/830/2/L27 . free.
  113. José Abreu. etal . Is there a planetary influence on solar activity? . Astronomy & Astrophysics . 548 . A88 . 2012 . 10.1051/0004-6361/201219997 . 2012A&A...548A..88A . free .
  114. S. Poluianov. I. Usoskin. Critical Analysis of a Hypothesis of the Planetary Tidal Influence on Solar Activity. Solar Physics. 2014 . 289. 6. 2333. 10.1007/s11207-014-0475-0. 1401.3547. 2014SoPh..289.2333P. 16188804.
  115. F. Stefani. A. Giesecke . T. Weier . A Model of a Tidally Synchronized Solar Dynamo . Solar Physics . 294 . 5 . 60 . May 2019 . 10.1007/s11207-019-1447-1 . 1803.08692 . 2019SoPh..294...60S . 73609026 .
  116. K. Petrovay. Solar Cycle Prediction . Living Reviews in Solar Physics. 2019 . 7. 6. 10.12942/lrsp-2010-6. free . 27194963. 4841181.
  117. Cionco . Rodolfo G. . Kudryavtsev . Sergey M. . Soon . Willie W.-H. . Tidal Forcing on the Sun and the 11-Year Solar-Activity Cycle . Solar Physics . May 2023 . 298 . 5 . 70 . 10.1007/s11207-023-02167-w. 2304.14168 . 2023SoPh..298...70C . 258352738 .