Stress granule explained

In cellular biology, stress granules are biomolecular condensates in the cytosol composed of proteins and RNAs that assemble into 0.1–2 μm membraneless organelles when the cell is under stress.[1] [2] The mRNA molecules found in stress granules are stalled translation pre-initiation complexes associated with 40S ribosomal subunits, translation initiation factors, poly(A)+ mRNAs and RNA-binding proteins (RBPs). While they are membraneless organelles, stress granules have been proposed to be associated with the endoplasmatic reticulum.[3] There are also nuclear stress granules. This article is about the cytosolic variety.

Proposed functions

The function of stress granules remains largely unknown. Stress granules have long been proposed to have a function to protect RNAs from harmful conditions, thus their appearance under stress.[4] The accumulation of RNAs into dense globules could keep them from reacting with harmful chemicals and safeguard the information coded in their RNA sequence.

Stress granules might also function as a decision point for untranslated mRNAs. Molecules can go down one of three paths: further storage, degradation, or re-initiation of translation.[5] Conversely, it has also been argued that stress granules are not important sites for mRNA storage nor do they serve as an intermediate location for mRNAs in transit between a state of storage and a state of degradation.[6]

Efforts to identify all RNAs within stress granules (the stress granule transcriptome) in an unbiased way by sequencing RNA from biochemically purified stress granule "cores" have shown that RNAs are not recruited to stress granules in a sequence-specific manner, but rather generically, with longer and/or less-optimally translated transcripts being enriched. These data imply that the stress granule transcriptome is influenced by the valency of RNA (for proteins or other RNAs) and by the rates of RNA run-off from polysomes. The latter is further supported by recent single molecule imaging studies.[7] Furthermore, it was estimated that only about 15% of the total mRNA in the cell is localized to stress granules, suggesting that stress granules only influence a minority of mRNAs in the cell and may not be as important for mRNA processing as previously thought.[8] [9] That said, these studies represent only a snapshot in time, and it is likely that a larger fraction of mRNAs are at one point stored in stress granules due to those RNAs transiting in and out.

The stress proteins that are the main component of stress granules in plant cells are molecular chaperones that sequester, protect, and possibly repair proteins that unfold during heat and other types of stress.[10] [11] Therefore, any association of mRNAs with stress granules may simply be a side effect of the association of partially unfolded RNA-binding proteins with stress granules,[12] similar to the association of mRNAs with proteasomes.[13]

Formation

Environmental stressors trigger cellular signaling, eventually leading to the formation of stress granules. In vitro, these stressors can include heat, cold, oxidative stress (sodium arsenite), endoplasmic reticulum stress (thapsigargin), proteasome inhibition (MG132), hyperosmotic stress, ultraviolet radiation, inhibition of eIF4A (pateamine A, hippuristanol, or RocA), nitric oxide accumulation after treatment with 3-morpholinosydnonimine (SIN-1),[14] perturbation of pre-mRNA splicing,[15] and other stressors, like puromycin, which result in disassembled polysomes.[16] Many of these stressors result in the activation of particular stress-associated kinases (HRI, PERK, PKR, and GCN2), translational inhibition and stress granule formation. Stress granules will also form upon Gαq activation in a mechanism that involves the release of stress granule associated proteins from the cytosolic population of the Gαq effector phospholipase Cβ.[17]

Stress granule formation is often downstream of the stress-activated phosphorylation of eukaryotic translation initiation factor eIF2α; this does not hold true for all types of stressors that induce stress granules, for instance, eIF4A inhibition. Further downstream, prion-like aggregation of the protein TIA-1 promotes the formation of stress granules. The term prion-like is used because aggregation of TIA-1 is concentration dependent, inhibited by chaperones, and because the aggregates are resistant to proteases.[18] It has also been proposed that microtubules play a role in the formation of stress granules, perhaps by transporting granule components. This hypothesis is based on the fact that disruption of microtubules with the chemical nocodazole blocks the appearance of the granules.[19] Furthermore, many signaling molecules have been shown to regulate the formation or dynamics of stress granules; these include the "master energy sensor" AMP-activated protein kinase (AMPK),[20] the O-GlcNAc transferase enzyme (OGT),[21] and the pro-apoptotic kinase ROCK1.[22]

Potential roles of RNA-RNA interactions

RNA phase transitions driven in part by intermolecular RNA-RNA interactions may play a role in stress granule formation. Similar to intrinsically disordered proteins, total RNA extracts are capable of undergoing phase separation in physiological conditions in vitro.[23] RNA-seq analyses demonstrate that these assemblies share a largely overlapping transcriptome with stress granules, with RNA enrichment in both being predominately based on the length of the RNA. Further, stress granules contain many RNA helicases, including the DEAD/H-box helicases Ded1p/DDX3, eIF4A1, and RHAU.[24] In yeast, catalytic ded1 mutant alleles give rise to constitutive stress granules[25] ATPase-deficient DDX3X (the mammalian homolog of Ded1) mutant alleles are found in pediatric medulloblastoma,[26] and these coincide with constitutive granular assemblies in patient cells.[27] These mutant DDX3 proteins promote stress granule assembly in HeLa cells. In mammalian cells, RHAU mutants lead to reduced stress granule dynamics. Thus, some hypothesize that RNA aggregation facilitated by intermolecular RNA-RNA interactions plays a role in stress granule formation, and that this role may be regulated by RNA helicases.[28] There is also evidence that RNA within stress granules is more compacted, compared to RNA in the cytoplasm, and that the RNA is found to be post-translationally modified by N6-methyladenosine (m6A) on its 5' ends or RNA acetylation ac4C.[29] [30] [31] Recent work has shown that the highly abundant translation initiation factor and DEAD-box protein eIF4A limits stress granule formation. It does so through its ability to bind ATP and RNA, acting analogously to protein chaperones like Hsp70.[32]

Connection with processing bodies

Stress granules and P-bodies (processing bodies) share RNA and protein components, both appear under stress, and can physically associate with one another. As of 2018, of the ~660 proteins identified as localizing to stress granules, ~11% also have been identified as processing body-localized proteins (see below). The protein G3BP1 is necessary for the proper docking of processing bodies and stress granules to each other, which may be important for the preservation of polyadenylated mRNAs.

Although some protein components are shared between stress granules and processing bodies, the majority of proteins in either structure are uniquely localized to either structure.[33] While both stress granules and P-bodies are associated with mRNAs, processing bodies have been long proposed to be sites of mRNA degradation because they contain enzymes like DCP1/2 and XRN1 that are known to degrade mRNAs. However, others have demonstrated that mRNAs associated with processing bodies are largely translationally repressed but not degraded. It has also been proposed that mRNAs selected for degradation are passed from stress granules to processing bodies,[34] though there is also data suggesting that processing bodies precede and promote stress granule formation.[35]

Protein composition of stress granules

The complete proteome of stress granules is still unknown, but efforts have been made to catalog all of the proteins that have been experimentally demonstrated to transit into stress granules.[36] [37] [38] Importantly, different stressors can result in stress granules with different protein components. Many stress granule-associated proteins have been identified by transiently stressing cultured cells and utilizing microscopy to detect the localization of a protein of interest either by expressing that protein fused to a fluorescent protein (i.e. green fluorescent protein (GFP)) and/or by fixing cells and using antibodies to detect the protein of interest along with known protein markers of stress granules (immunocytochemistry).[39]

In 2016, stress granule "cores" were experimentally identified and then biochemically purified for the first time. Proteins in the cores were identified in an unbiased manner using mass spectrometry. This technical advance lead to the identification of hundreds of new stress granule-localized proteins.[40] [41] [42]

The proteome of stress granules has also been experimentally determined by using two slightly different proximity labeling approaches. One of these proximity labeling approaches is the ascorbate peroxidase (APEX) method, in which cells are engineered to express a known stress granule protein, such as G3BP1, fused to a modified ascorbate peroxidase enzyme called APEX.[43] Upon incubating the cells in biotin and treating the cells with hydrogen peroxide, the APEX enzyme will be briefly activated to biotinylate all proteins in close proximity to the protein of interest, in this case G3BP1 within stress granules. Proteins that are biotinylated can then be isolated via streptavidin and identified using mass spectrometry. The APEX technique was used to identify ~260 stress granule-associated proteins in several cell types, including neurons, and with various stressors. Of the 260 proteins identified in this study, ~143 had not previously been demonstrated to be stress granule-associated.

Another proximity labeling method used to determine the proteome of stress granules is BioID.[44] BioID is similar to the APEX approach, in that a biotinylating protein (BirA* instead of APEX) was expressed in cells as a fusion protein with several known stress granule-associated proteins. Proteins in close proximity to BirA* will be biotinylated and are then identified by mass spectrometry. Youn et al. used this method to identify/predict 138 proteins as stress granule-associated and 42 as processing body-associated.

A curated database of stress granule-associated proteins can be found here http://rnagranuledb.lunenfeld.ca/.

The following is a list of proteins that have been demonstrated to localize to stress granules (compiled from [45]):

Gene IDProtein NameDescriptionReferencesAlso found in processing bodies?
ABCF1ABCF1ATP Binding Cassette Subfamily F Member 1
ABRACLABRACLABRA C-Terminal Like
ACAP1ACAP1ArfGAP With Coiled-Coil, Ankyrin Repeat And PH Domains 1
ACBD5ACBD5Acyl-CoA Binding Domain Containing 5
ACTBL2ACTBL2Beta-actin-like protein 2yes
ACTR1AACTR1AAlpha-centractin
ACTR1BACTR1BBeta-centractin
ADARADAR1Adenosine Deaminase, RNA Specific[46]
ADD1Adducin 1Adducin 1
AGO1Argonaute 1/EIF2C1Argonaute 1, RISC Catalytic Component[47] yes
AGO2Argonaute 2Argonaute 2, RISC Catalytic Component[48] [49] [50] yes
AKAP8AKAP8A-Kinase Anchoring Protein 8
AKAP9AKAP350A-Kinase Anchoring Protein 9[51]
AKAP13AKAP13/LBCA-Kinase Anchoring Protein 13
ALDH18A1ALDH18A1Delta-1-pyrroline-5-carboxylate synthase
ALG13ALG13ALG13, UDP-N-Acetylglucosaminyltransferase Subunit
ALPK2ALPK2/HAKAlpha Kinase 2
AMOTL2AMOTL2/LCCPAngiomotin Like 2
ANKHD1ANKHD1Ankyrin Repeat and KH Domain Containing 1yes
ANKRD17ANKRD17/MASK2/GTARAnkyrin Repeat Domain 17yes
ANGAngiogeninAngiogenin[52]
ANP32EANP32EAcidic leucine-rich nuclear phosphoprotein 32 family member E
ANXA1ANXA1Annexin A1
ANXA11ANXA11Annexin 11
ANXA6ANXA6Annexin 6
ANXA7ANXA7Annexin 7
APEX1APEX1DNA-(apurinic or apyrimidinic site) lyase
APOBEC3CAPOBEC3CApolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3C
APOBEC3GAPOBEC3GApolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3G
ARID2ARID2/BAF200AT-Rich Interaction Domain 2
ARPC1BARPC1BActin-related protein 2/3 complex subunit 1B
AHSA1AHA1Activator Of HSP90 ATPase Activity 1[53]
AQRAQR/IBP160Aquarius Intron-Binding Spliceosomal Factor
ARMC6ARMC6Armadillo Repeat Containing 6
ASCC1ASCC1Activating Signal Cointegrator 1 Complex Subunit 1
ASCC3ASCC3Activating Signal Cointegrator 1 Complex Subunit 3
ATAD2ATAD2ATPase family AAA domain-containing protein 2
ATAD3AATAD3AATPase family AAA domain-containing protein 3Ayes
ATG3ATG3Autophagy Related 3
ATP5A1ATP5A1ATP synthase subunit alpha, mitochondrial
ATP6V1G1ATP6V1G1/ATP6GATPase H+ Transporting V1 Subunit G1
ATXN2Ataxin 2Ataxin 2[54] [55] [56] [57] [58] [59]
ATXN2LAtaxin-2 likeAtaxin 2 Like
BAG3BAG3BAG family molecular chaperone regulator 3
BANF1BANF1Barrier-to-autointegration factor
BAZ1BBAZ1BBromodomain Adjacent To Zinc Finger Domain 1B
BAZ2ABAZ2ABromodomain Adjacent To Zinc Finger Domain 2A
BCCIPBCCIPBRCA2 And CDKN1A Interacting Protein
BCLAF1BCLAF1BCL2 Associated Transcription Factor 1
BICC1BICC1BicC Family RNA Binding Protein 1
BIRC2BIRC2/CIAP1Baculoviral IAP Repeat Containing 2
BLMBLMBLM RecQ Like Helicase
BOD1L1BOD1L1/FAM44ABiorientation Of Chromosomes In Cell Division 1 Like 1
BOLLBOULEBoule Homolog, RNA Binding Protein[60]
BRAT1BRAT1BRCA1-associated ATM activator 1
BRF1BRF1BRF1, RNA Polymerase III Transcription Initiation Factor Subunit
BTG3BTG3BTG Anti-Proliferation Factor 3yes
C9orf72C9orf72Uncharacterized protein C9orf72[61] [62]
C15orf52C15orf52Uncharacterized protein C15orf52
C20orf27C20orf72Chromosome 20 Open Reading Frame 27
C2CD3C2CD3C2 Calcium Dependent Domain Containing 3
CALML5CALML5Calmodulin-like protein 5
CALRCalreticulin/CRTCalreticulin[63]
CAMSAP1CAMSAP1Calmodulin Regulated Spectrin Associated Protein 1
CAP1CAP1Adenylyl cyclase-associated protein 1
CAPRIN1Caprin-1Cell Cycle Associated Protein 1[64] [65] [66] [67] [68]
CAPZA2CAPZA2F-actin-capping protein subunit alpha-2
CAPZBCAPZBCapping Actin Protein Of Muscle Z-Line Subunit Beta
CARHSP1CARHSP1Calcium-regulated heat stable protein 1
CASC3MLN51/BTZCancer Susceptibility 3[69] [70]
CBFBCBFBCore-binding factor subunit beta
CBSCBSCystathionine Beta-Synthase
CBX1CBX1Chromobox protein homolog 1
CBX3CBX3Chromobox protein homolog 3
CCAR1CARP-1Cell Division Cycle and Apoptosis Regulator 1
CCDC9CCDC9Coiled-Coil Domain Containing 9
CCDC9BCCDC9BCoiled-Coil Domain Containing 9B
CCDC124CCDC124Coiled-Coil Domain Containing 124
CCDC85CCCDC85CCoiled-Coil Domain Containing 85C
CCT3CCT3T-complex protein 1 subunit gamma
CCT6ACCT6AT-complex protein 1 subunit zeta
CDC20CDC20Cell Division Cycle 20
CDC37CDC37Cell Division Cycle 37
CDC5LCDC5LCell division cycle 5-like protein
CDC73CDC73Parafibromin
CDK1CDK1Cyclin-dependent kinase 1
CDK2CDK2Cyclin Dependent Kinase 2[71]
CDV3CDV3CDV3 Homolog
CELF1CUGBP1CUGBP Elav-Like Family Member 1[72]
CELF2CUGBP2/BRUNOL3CUGBP Elav-Like Family Member 2
CELF3CUGBP3/BRUNOL1CUGBP Elav-Like Family Member 3
CENPBCENPBMajor centromere autoantigen B
CENPFCENPFCentromere Protein F
CEP78CEP78/CRDHLCentrosomal Protein 78
CEP85CEP85/CCDC21Centrosomal Protein 78
CERKLCeramide-Kinase LikeCeramide Kinase Like[73]
CFL1Cofilin-1Cofilin-1
CHCHD3CHCHD3Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial
CHORDC1CHORDC1/CHP1Cysteine and histidine-rich domain-containing protein 1
CIRBPCIRPCold Inducible RNA Binding Protein[74]
CITCITCitron Rho-interacting kinase
CLIC4CLIC4Chloride intracellular channel protein 4
CLNS1ACLNS1AChloride Nucleotide-Sensitive Channel 1A
CLPPCLPPCaseinolytic Mitochondrial Matrix Peptidase Proteolytic Subunit
CNBPZNF9CCHC-Type Zinc Finger Nucleic Acid Binding Protein[75]
CNN3CNN3Calponin-3
CNOT1CNOT1/CCR4CCR4-Not Transcription Complex Subunit 1yes[76]
CNOT10CNOT10CCR4-Not Transcription Complex Subunit 10yes
CNOT11CNOT11CCR4-Not Transcription Complex Subunit 11yes
CNOT2CNOT2CCR4-Not Transcription Complex Subunit 2yes
CNOT3CNOT3CCR4-Not Transcription Complex Subunit 3yes
CNOT4CNOT4CCR4-Not Transcription Complex Subunit 4yes
CNOT6CNOT6CCR4-Not Transcription Complex Subunit 6yes
CNOT6LCNOT6LCCR4-Not Transcription Complex Subunit 6Lyes
CNOT7CNOT7CCR4-Not Transcription Complex Subunit 7yes
CNOT8CNOT8CCR4-Not Transcription Complex Subunit 8yes
CNOT9CNOT9CCR4-Not Transcription Complex Subunit 9
CORO1BCORO1BCoronin-1B
CPB2Carboxypeptidase B2Carboxypeptidase B2[77]
CPEB1CPEBCytoplasmic Polyadenylation Element Binding Protein 1[78]
CPEB4CPEB4Cytoplasmic Polyadenylation Element Binding Protein 4yes
CPSF3CPSF3Cleavage and polyadenylation specificity factor subunit 3
CPSF6CPSF6Cleavage and polyadenylation specificity factor subunit 6
CPSF7CPSF7Cleavage and polyadenylation specificity factor subunit 7
CPVLCPVLCarboxypeptidase, Vitellogenic Likeyes
CRKLCRKLCRK Like Proto-Oncogene, Adaptor Protein
CROCCCROCCCiliary Rootlet Coiled-Coil, Rootletin
CRYABCRYABAlpha-crystallin B chain
CRYBG1CRYBG1Crystallin Beta-Gamma Domain Containing 1
CSDE1CSDE1Cold shock domain-containing protein E1
CSE1LCSE1L/XPO2/Exportin-2Exportin-2
CSNK2A1Casein Kinase 2 alphaCasein Kinase 2 Alpha 1[79]
CSTBCystatin BCystatin B
CSTF1CSTF1Cleavage stimulation factor subunit 1
CTNNA2CTNNA2Catenin alpha-2
CTNND1CTNND1Catenin delta-1
CTTNBP2NLCTTNBP2NLCTTNBP2 N-terminal-like protein
CWC22CWC22Pre-mRNA-splicing factor CWC22 homolog
DAZAP1DAZAP1DAZ-associated protein 1
DAZAP2PRTBDAZ Associated Protein 2[80]
DAZLDAZL1Deleted In Azoospermia Like[81]
DCDDCDDermcidin
DCP1ADCP1aDecapping mRNA 1ayes
DCP1BDCP1bDecapping mRNA 1byes
DCP2DCP2Decapping mRNA 2
DCTN1DCTN1Dynactin subunit 1
DDX1DEAD box protein 1DEAD-Box Helicase 1[82]
DDX11DEAD box protein 11DEAD-Box Helicase 11
DDX19ADDX19AATP-dependent RNA helicase DDX19A
DDX21DDX21Nucleolar RNA helicase 2yes
DDX3DEAD box protein 3DEAD-Box Helicase 3[83] [84]
DDX3XDDX3XDEAD-Box Helicase 3, X-Linked[85] [86]
DDX3YDDX3YDEAD-Box Helicase 3, Y-Linked
DDX31DDX31DEAD-Box Helicase 31
DDX47DDX47Probable ATP-dependent RNA helicase DDX47
DDX50DDX50ATP-dependent RNA helicase DDX50yes
DDX58RIG-IDExD/H-Box Helicase 58[87]
DDX6DEAD box protein 6DEAD-Box Helicase 6[88] [89] yes
DERADERADeoxyribose-Phosphate Aldolase[90]
DGCR8DGCR8DGCR8 Microprocessor Complex Subunit
DHX30DHX30Putative ATP-dependent RNA helicase DHX30yes
DHX33DHX33DEAH-Box Helicase 33
DHX36RHAUDEAH-Box Helicase 36
DHX57DHX57DExH-Box Helicase 57
DHX58LGP2DExH-Box Helicase 58
DIDO1DIDO1Death Inducer-Obliterator 1
DIS3L2DIS3L2/FAM3ADIS3 Like 3'-5' Exoribonuclease 2
DISC1Disrupted in Schizophrenia 1Disrupted In Schizophrenia 1[91]
DKC1DKC1dyskerin; H/ACA ribonucleoprotein complex subunit 4[92]
DNAI1Axonemal Dynein Intermediate Chain 1Dynein Axonemal Intermediate Chain 1[93]
DNAJA1DNAJA1DnaJ homolog subfamily A member 1
DNAJC8DNAJC8DnaJ homolog subfamily C member 8
DOCK4DOCK4Dedicator Of Cytokinesis 4
DPYSL2DPYSL2Dihydropyrimidinase-related protein 2
DPYSL3DPYSL3Dihydropyrimidinase-related protein 3
DROSHADROSHADrosha Ribonuclease III
DSPDSPDesmoplakin
DSTDSTDystonin
DSTNDSTNDestrin
DTLDTLDenticleless E3 Ubiquitin Protein Ligase Homolog
DTX3LDTX3LE3 ubiquitin-protein ligase DTX3L
DUSP12DUSP12/YVH1Dual Specificity Phosphatase 12[94]
DYNC1H1Cytoplasmic Dynein Heavy Chain 1Dynein Cytoplasmic 1 Heavy Chain 1
DYNLL1Cytoplasmic Dynein Light PolypeptideDynein Light Chain LC8-Type 1[95]
DYNLL2DYNLL2Dynein light chain 2, cytoplasmic
DYRK3DYRK3Dual Specificity Tyrosine Phosphorylation Regulated Kinase 3[96]
DZIP1DZIP1DAZ Interacting Zinc Finger Protein 1[97]
DZIP3DZIP3DAZ Interacting Zinc Finger Protein 3
EDC3EDC3Enhancer of mRNA Decapping 3yes
EDC4EDC4Enhancer of mRNA-Decapping protein 4yes
EIF1EIF1Eukaryotic Translation Initiation Factor 1
EIF2AEIF2AEukaryotic Translation Initiation Factor 2A[98]
EIF2AK2Protein Kinase R/PKREukaryotic Translation Initiation Factor 2 Alpha Kinase 2[99]
EIF2B1-5EIF2BEukaryotic Translation Initiation Factor 2B
EIF2S1EIF2A subunit 1Eukaryotic Translation Initiation Factor 2 Subunit Alpha
EIF2S2EIF2A subunit 2Eukaryotic Translation Initiation Factor 2 Subunit Beta
EIF3AEIF3AEukaryotic Translation Initiation Factor 3 Subunit A[100]
EIF3BEIF3BEukaryotic Translation Initiation Factor 3 Subunit B[101] [102]
EIF3CEIF3CEukaryotic Translation Initiation Factor 3 Subunit C
EIF3DEIF3DEukaryotic translation initiation factor 3 subunit D
EIF3EEIF3EEukaryotic translation initiation factor 3 subunit E
EIF3FEIF3FEukaryotic translation initiation factor 3 subunit F
EIF3GEIF3GEukaryotic translation initiation factor 3 subunit G
EIF3HEIF3HEukaryotic translation initiation factor 3 subunit H
EIF3IEIF3IEukaryotic translation initiation factor 3 subunit I
EIF3JEIF3JEukaryotic translation initiation factor 3 subunit J
EIF3KEIF3KEukaryotic translation initiation factor 3 subunit K
EIF3LEIF3LEukaryotic translation initiation factor 3 subunit L
EIF3MEIF3MEukaryotic translation initiation factor 3 subunit M
EIF4A1EIF4A1Eukaryotic Translation Initiation Factor 4A1[103]
EIF4A2EIF4A2Eukaryotic Translation Initiation Factor 4A2[104]
EIF4A3EIF4A3Eukaryotic Translation Initiation Factor 4A3
EIF4BEIF4BEukaryotic translation Initiation factor 4B
EIF4EEIF4EEukaryotic Translation Initiation Factor 4E[105] [106] [107] yes
EIF4E2EIF4E2Eukaryotic Translation Initiation Factor 4E Family Member 2yes
EIF4E3EIF4E3Eukaryotic Translation Initiation Factor 4E Family Member 3
EIF4ENIF1EIF4ENIF1Eukaryotic Translation Initiation Factor 4E Nuclear Import Factor 1yes
EIF4G1EIF4G1Eukaryotic Translation Initiation Factor 4G1[108] [109] [110]
EIF4G2EIF4G2Eukaryotic Translation Initiation Factor 4G2
EIF4G3EIF4G3Eukaryotic Translation Initiation Factor 4G3
EIF4HEIF4HEukaryotic translation Initiation factor 4H
EIF5AEIF5AEukaryotic Translation Initiation Factor 5A
ELAVL1HuRELAV Like RNA Binding Protein 1[111] [112] [113] [114] yes
ELAVL2ELAVL2ELAV-like protein 2yes
ELAVL3ELAVL3/HuCELAV Like RNA Binding Protein 3
ELAVL4HuDELAV Like RNA Binding Protein 4[115]
ENC1ENC1Ectodermal-Neural Cortex 1
ENDOVEndoVEndonuclease V[116]
ENTPD1ENTPD1Ectonucleoside Triphosphate Diphosphohydrolase 1
EP400EP400E1A Binding Protein P400
EPPK1EPPK1Epiplakin
ETF1ETF1Eukaryotic peptide chain release factor subunit 1
EWSR1EWSR1EWS RNA Binding Protein 1[117] [118]
FABP5FABP5Fatty Acid Binding Protein 5
FAM120AFAM120A/OSSAConstitutive coactivator of PPAR-gamma-like protein 1yes
FAM120CFAM120CFamily With Sequence Similarity 120C
FAM168AFAM168AFamily With Sequence Similarity 168 Member A
FAM168BFAM168B/MANIFamily With Sequence Similarity 168 Member B
FAM83HFAM83HFamily With Sequence Similarity 83 Member H
FAM98AFAM98AFamily With Sequence Similarity 98 Member A[119]
FAM98CFAM98CFamily With Sequence Similarity 98 Member C
FASTKFASTFas Activated Serine/Threonine Kinaseyes
FBLFBLrRNA 2-O-methyltransferase fibrillarin
FBRSL1Fibrosin Like 1Fibrosin Like 1
FHL1FHL1Four and a half LIM domains protein 1
FKBP1AFKBP1AFKBP Prolyl Isomerase 1A
FLNBFLNBFilamin-B
FMR1FMRPFragile X Mental Retardation 1[120] [121]
FNDC3BFNDC3BFibronectin type III domain-containing protein 3B
FSCN1FSCN1Fascin
FTSJ3FTSJ3pre-rRNA processing protein FTSJ3
FUBP1FUBP1Far Upstream Element Binding Protein 1
FUBP3FUBP3Far upstream element-binding protein 3
FUSFUSFUS RNA Binding Protein[122] [123] [124] [125] [126] [127] [128]
FXR1FXR1FMR1 Autosomal Homolog 1[129]
FXR2FXR2FMR1 Autosomal Homolog 2
G3BP1G3BP1G3BP Stress Granule Assembly Factor 1[130] [131] [132] [133]
G3BP2G3BP2G3BP Stress Granule Assembly Factor 2[134] [135]
GABARAPL2GABARAPL2/GEF2/ATG8GABA Type A Receptor Associated Protein Like 2
GAKGAKCyclin G Associated Kinase
GAR1GAR1H/ACA Ribonucleoprotein Complex Subunit 1
GCAGrancalcinGrancalcin
GEMIN5Gemin-5Gem Nuclear Organelle Associated Protein 5
GFPT1GFPT1Glutamine—fructose-6-phosphate aminotransferase [isomerizing] 1
GIGYF1GIGYF1/PERQ1GRB10 Interacting GYF Protein 1
GIGYF2GIGYF2/TNRC15/PARK11/PERQ2GRB10 Interacting GYF Protein 2yes
GLE1GLE1GLE1, RNA Export Mediator[136] [137]
GLO1GlyoxalaseGlyoxalase
GLRX3GLRX3/Glutaredoxin 3/TNLX2Glutaredoxin 3
GLUD1GLUD1Glutamate Dehydrogenase 1
GNB2GNB2Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2
GOLGA2Golgin A2Golgin A2
GPAT3GPAT3Glycerol-3-Phosphate Acyltransferase 3
GRB2GRB2/ASHGrowth Factor Receptor Bound Protein 2
GRB7GRB7Growth Factor Receptor Bound Protein 7[138] [139]
GRSF1GRSF1G-Rich RNA Sequence Binding Factor 1
GSPT1eRF3G1 To S Phase Transition 1[140]
GTF2IGTF2IGeneral Transcription Factor IIi
GTF3C1GTF3C1General Transcription Factor IIIC Subunit 1
GTF3C4GTF3C4General Transcription Factor IIIC Subunit 4
H1F0H1F0Histone H1.0
H1FXH1FXHistone H1x
H2AFVH2AFVHistone H2A.V
HABP4Ki-1/57Hyaluronan Binding Protein 4[141]
HDAC6HDAC6Histone Deacetylase 6
HDLBPHDL-Binding Protein/VGL/VigilinHigh Density Lipoprotein Binding Protein
HELZHELZProbable helicase with zinc finger domainyes
HELZ2HELZ2Helicase with zinc finger domain 2
HMGA1HMGA1High mobility group protein HMG-I/HMG-Y
HMGB3HMGB3High mobility group protein B3
HMGN1HMGN1Non-histone chromosomal protein HMG-14
HNRNPA1HnRNPA1Heterogeneous Nuclear Ribonucleoprotein A1[142] [143] [144] [145]
HNRNPA2B1HnRNPA2/B1Heterogeneous Nuclear Ribonucleoprotein A2/B1[146]
HNRNPA3HNRNPA3Heterogeneous nuclear ribonucleoprotein A3
HNRNPABHNRNPABHeterogeneous nuclear ribonucleoprotein A/B
HNRNPDHNRNPDHeterogeneous nuclear ribonucleoprotein D
HNRNPDLHNRNPDLHeterogeneous nuclear ribonucleoprotein D-like
HNRNPFHNRNPFHeterogeneous nuclear ribonucleoprotein F
HNRNPH1HNRNPH1Heterogeneous nuclear ribonucleoprotein H1
HNRNPH2HNRNPH2Heterogeneous nuclear ribonucleoprotein H2
HNRNPH3HNRNPH3Heterogeneous nuclear ribonucleoprotein H3
HNRNPKHNRNPKHeterogeneous Nuclear Ribonucleoprotein K[147]
HNRNPUL1HNRNPUL1Heterogeneous nuclear ribonucleoprotein U-like protein 2
HSBP1HSBP1Heat Shock Factor Binding Protein 1
HSP90AA1HSP90Heat shock protein HSP 90-alpha
HSPA4HSP70 RYHeat shock 70 kDa protein 4
HSPA9HSP70 9BStress-70 protein, mitochondrial
HSPB1HSP27Heat Shock Protein Family B (Small) Member 1[148] yes
HSPB8HSPB8Heat Shock Protein Family B (Small) Member 8[149]
HSPBP1HSPBP1HSPA (Hsp70) Binding Protein 1[150]
HSPD1HSPD160 kDa heat shock protein, mitochondrial
HTTHuntingtinHuntingtin
IBTKIBTKInhibitor Of Bruton Tyrosine Kinase
IFIH1MDA5Interferon Induced With Helicase C Domain 1
IGF2BP1IGF2BP1Insulin-like Growth Factor 2 mRNA-binding protein 1yes
IGF2BP2IGF2BP2Insulin-like Growth Factor 2 mRNA-binding protein 2yes
IGF2BP3IGF2BP3Insulin-like Growth Factor 2 mRNA Binding Protein 3yes
IKIKProtein Red
ILF3NF90Interleukin Enhancer Binding Factor 3[151] yes
IPO7IPO7Importin-7
IPPKIP5KInositol-Pentakisphosphate 2-Kinase[152]
ITGB1ITGB1Integrin beta-1
JMJD6JMJD6Arginine Demethylase and Lysine Hydroxylase
KANK2KANK2KN motif and ankyrin repeat domain-containing protein 2
KEAP1KEAP1/KLHL19Kelch Like ECH Associated Protein 1
KHDRBS1Sam68KH RNA Binding Domain Containing, Signal Transduction Associated 1[153] [154] [155]
KHDRBS3KHDRBS3KH domain-containing, RNA-binding, signal transduction-associated protein 3
KHSRPKSRP/FBP2KH-Type Splicing Regulatory Protein[156]
KIAA0232KIAA0232KIAA0232yes
KIAA1524CIP2AProtein CIP2A
KIF1BKIF1BKinesin Family Member 1B
KIF13BKIF13B/GAKINKinesin Family Member 13B
KIF23KIF23Kinesin-like protein KIF23yes
KIF2AKinesin Heavy Chain Member 2Kinesin Family Member 2A
KLC1Kinesin Light Chain 1Kinesin Light Chain 1
KPNA1Importin-ɑ5Karyopherin Subunit Alpha 1[157]
KPNA2Importin-ɑ1Karyopherin Subunit Alpha 2[158]
KPNA3Importin-ɑ4Karyopherin Subunit Alpha 3
KPNA6Importin-ɑ7Importin subunit alpha
KPNB1Importin-β1Karyopherin Subunit Beta 1
L1RE1LINE1 ORF1pLINE1 ORF1 protein
LANCL1LanC Like 1LanC Like 1
LARP1LARP1La-related protein 1
LARP1BLARP1BLa-related protein 1b
LARP4La-Related protein 4La Ribonucleoprotein Domain Family Member 4[159]
LARP4BLARP4BLa Ribonucleoprotein Domain Family Member 4B
LASP1LIM And SH3 Protein 1/MLN50LIM And SH3 Protein 1
LBRLBRLamin-B receptor
LEMD3LEMD3Inner nuclear membrane protein Man1
LIG3DNA Ligase 3DNA Ligase 3
LIN28ALIN28ALin-28 Homolog A[160]
LIN28BLIN28BLin-28 Homolog B
LMNALMNAPrelamin-A/C
LPPLPPLipoma-preferred partner
LSM1LSM1LSM1 Homolog, mRNA Degradation Associatedyes[161]
LSM12LSM12LSM12 Homolog
LSM14ARAP55LSM14A, mRNA Processing Body Assembly Factor[162] [163] yes
LSM14BLSM14BProtein LSM14 homolog Byes
LSM3LSM3U6 snRNA-associated Sm-like protein LSm3yes
LUC7LLUC7LPutative RNA-binding protein Luc7-like 1
LUZP1LUZP1Leucine zipper protein 1
MACF1MACF1Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5
MAELMAELMaelstrom Spermatogenic Transposon Silencer[164]
MAGEA4MAGEA4Melanoma-associated antigen 4
MAGED1MAGED1Melanoma-associated antigen D1
MAGED2MAGED2Melanoma-associated antigen D2
MAGOHBMAGOHBProtein mago nashi homolog 2
MAP1LC3ALC3-IMicrotubule Associated Protein 1 Light Chain 3 Alpha[165] [166]
MAP4MAP4Microtubule-associated protein 4
MAPK1IP1LMAPK1IP1LMitogen-Activated Protein Kinase 1 Interacting Protein 1 Like
MAP4K4MAP4K4Mitogen-activated protein kinase kinase kinase kinase 4
MAPK8JNK1Mitogen-Activated Protein Kinase 8[167]
MAPRE1MAPRE1Microtubule-associated protein RP/EB family member 1
MAPRE2MAPRE2Microtubule Associated Protein RP/EB Family Member 2
MARF1MARF1Meiosis Regulator And mRNA Stability Factor 1yes
MARSMARSMethionine—tRNA ligase, cytoplasmic
MBNL1MBNL1Muscleblind Like Splicing Regulator 1
MBNL2MBNL2Muscleblind Like Splicing Regulator 2
MCM4MCM4DNA replication licensing factor MCM4
MCM5MCM5DNA replication licensing factor MCM5
MCM7MCM7DNA replication licensing factor MCM7yes
METAP1METAP1Methionine aminopeptidase
METAP2METAP2Methionyl Aminopeptidase 2
MCRIP1FAM195B/GRAN2Granulin-2
MCRIP2FAM195A/GRAN1Granulin-1
MEX3AMEX3ARNA-binding protein MEX3Ayes
MEX3BMEX3BMex-3 RNA Binding Family Member B[168]
MEX3CMEX3CMex-3 RNA Binding Family Member C[169]
MEX3DMEX3DMex-3 RNA Binding Family Member D
MFAP1MFAP1Microfibrillar-associated protein 1
MKI67MKI67Antigen KI-67
MKRN2MKRN2Makorin Ring Finger Protein 2
MOV10MOV-10Mov10 RISC Complex RNA Helicaseyes
MSH6MSH6DNA mismatch repair protein Msh6
MSI1Musashi-1Musashi RNA Binding Protein 1yes
MSI2MSI2RNA-binding protein Musashi homolog 2
MTHFD1MTHFD1C-1-tetrahydrofolate synthase, cytoplasmic
MTHFSDMTHFSDMethenyltetrahydrofolate Synthetase Domain Containing[170]
MTORMTORMechanistic Target Of Rapamycin[171]
MYO6MYO6Unconventional myosin-VI
NCOA3SRC-3Nuclear Receptor Coactivator 3[172]
NDEL1NUDEL/MITAP1/EOPANudE Neurodevelopment Protein 1 Like 1
NELFENELF-E/RDNegative Elongation Factor Complex Member E
NEXNNEXNNexilin
NXF1NXF1/MEX67/TAPNuclear RNA Export Factor 1
NKRFNRFNFK-B Repressing Factor
NOLC1Nucleolar And Coiled-Body Phosphoprotein 1/NOPP140Nucleolar And Coiled-Body Phosphoprotein 1
NONONonONon-POU Domain Containing Octamer Binding[173]
NOP58NOP58Nucleolar protein 58yes
NOSIPNOSIPNitric oxide synthase-interacting protein
NOVA2NOVA2NOVA Alternative Splicing Regulator 2
NRG2Neuregulin-2Neuregulin-2
NSUN2NSUN2tRNA (cytosine(34)-C(5))-methyltransferase
NTMT1NTMT1N-terminal Xaa-Pro-Lys N-methyltransferase 1
NUDCNUDCNuclear migration protein nudC
NUFIP1NUFIPNUFIP1, FMR1 Interacting Protein 1
NUFIP2NUFIP2Nuclear fragile X mental retardation-interacting protein 2
NUPL2NUPL2Nucleoporin Like 2
NUP153NUP153Nucleoporin 153
NUP205NUP205Nuclear pore complex protein Nup205
NUP210NUP210/GP210Nucleoporin 210
NUP214NUP214Nucleoporin 214
NUP50NUP50Nucleoporin 50
NUP58NUP58/NUPL1Nucleoporin 58
NUP85NUP85Nucleoporin 85
NUP88NUP88Nucleoporin 88
NUP98NUP98/NUP96Nuclear pore complex protein Nup98-Nup96
OASLOASL/OASL12'-5'-Oligoadenylate Synthetase Like[174]
OAS1OAS2′–5′ oligoadenylate synthetase
OAS2OAS22'-5'-Oligoadenylate Synthetase 2
OGFOD1TPA12-Oxoglutarate And Iron Dependent Oxygenase Domain Containing 1[175]
OGG1OGG18-Oxoguanine DNA Glycosylase[176]
OSBPL9Oxysterol Binding Protein Like 9Oxysterol Binding Protein Like 9
OTUD4OTUD4/HIN1OTU Deubiquitinase 4[177]
P4HBProlyl 4-Hydroxylase Subunit BetaProlyl 4-Hydroxylase Subunit Beta
PABPC1PABP1Poly(A) Binding Protein Cytoplasmic 1
PABPC4PABPC4Polyadenylate-binding protein 4
PAK4PAK4Serine/threonine-protein kinase PAK 4
PALLDPalladinPalladin
PARGPARG/PARG99/PARG102Poly(ADP-Ribose) Glycohydrolase[178]
PARK7PARK7/DJ-1Parkinsonism Associated Deglycase[179] yes
PARNPARN/DANPoly(A)-Specific Ribonuclease
PARP12PARP-12/ARTD12Poly(ADP-Ribose) Polymerase Family Member 12[180]
PARP14PARP-14Poly(ADP-Ribose) Polymerase Family Member 14
PARP15PARP-15Poly(ADP-Ribose) Polymerase Family Member 15
PATL1PATL1PAT1 Homolog 1, Processing Body mRNA Decay Factoryes
PAWRPAWRPRKC apoptosis WT1 regulator protein
PCBP1PCBP1/HNRNPE1Poly(RC) Binding Protein 1
PCBP2PCBP2/HNRNPE2Poly(RC) Binding Protein 2
PCNAPCNAProliferating cell nuclear antigen
PDAP1PDAP1PDGFA Associated Protein 1
PDCD4PDCD4Programmed Cell Death 4[181]
PDCD6IPPDCD6IPProgrammed cell death 6-interacting protein
PDIA3PDIA3Protein Disulfide Isomerase Family A Member 3
PDLIM1PDLIM1PDZ and LIM domain protein 1
PDLIM4PDLIM4PDZ and LIM domain protein 4
PDLIM5PDLIM5PDZ and LIM domain protein 5
PDS5BPDS5BSister chromatid cohesion protein PDS5 homolog B
PEF1PEF1Penta-EF-Hand Domain Containing 1
PEG10PEG10Paternally Expressed 10
PELOPELOProtein pelota homolog
PEPDPeptidase DPeptidase D
PEX11BPEX11BPeroxisomal Biogenesis Factor 11 Beta
PFDN4PFDN4Prefoldin subunit 4
PFN1Profilin 1Profilin 1
PFN2Profilin 2Profilin 2
PGAM5PGAM5Serine/threonine-protein phosphatase PGAM5, mitochondrial
PGPPGP/G3PPPhosphoglycolate Phosphatase
PHB2Prohibitin 2Prohibitin 2
PHLDB2PHLDB2Pleckstrin homology-like domain family B member 2
PKP1Plakophilin 1Plakophilin 1
PKP2Plakophilin 2Plakophilin 2
PKP3Plakophilin 3Plakophilin 3
PNPT1PNPase IPolyribonucleotide Nucleotidyltransferase 1
POLR2BPOLR2BDNA-directed RNA polymerase
POM121POM121POM121 Transmembrane Nucleoporin
POP7RPP20POP7 Homolog, Ribonuclease P/MRP Subunit
PPME1PPME1Protein phosphatase methylesterase 1
PPP1R8PPP1R8Protein Phosphatase 1 Regulatory Subunit 8
PPP1R10PPP1R10Serine/threonine-protein phosphatase 1 regulatory subunit 10
PPP1R18PPP1R18Phostensin
PPP2R1APPP2R1ASerine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform
PPP2R1BPPP2R1BSerine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform
PQBP1PQBP-1Polyglutamine Binding Protein 1[182]
PRDX1PRDX1Peroxiredoxin-1
PRDX6PRDX6Peroxiredoxin-6
PRKAA2AMPK-a2Protein Kinase AMP-Activated Catalytic Subunit Alpha 2
PRKCAPKC-ɑProtein Kinase C Alpha
PRKRAPACTProtein Activator Of Interferon Induced Protein Kinase EIF2AK2
PRMT1PRMT1Protein arginine N-methyltransferase 1
PRMT5PRMT5Protein arginine N-methyltransferase 5
PRRC2APRRC2AProline Rich Coiled-Coil 2A
PRRC2BPRRC2BProline Rich Coiled-Coil 2B
PRRC2CPRRC2CProline Rich Coiled-Coil 2C
PSMD2PSMD226S proteasome non-ATPase regulatory subunit 2[183]
PSPC1PSP1Paraspeckle Component 1
PTBP1PTBP1Polypyrimidine tract-binding protein 1
PTBP3PTBP3Polypyrimidine tract-binding protein 3
PTGES3PTGES3Prostaglandin E synthase 3
PTK2FAKProtein Tyrosine Kinase 2
PUM1Pumilio-1Pumilio homolog 1yes
PUM2Pumilio-2Pumilio RNA Binding Family Member 2
PURAPURATranscriptional activator protein Pur-alpha
PURBPURBTranscriptional activator protein Pur-beta
PWP1PWP1PWP1 Homolog, Endonuclein
PXDNLPMR1Peroxidasin Like[184]
PYCR1PYCR1Pyrroline-5-carboxylate reductase
QKIQKI/HQKQKI, KH Domain Containing RNA Binding
R3HDM1R3HDM1R3H Domain Containing 1
R3HDM2R3HDM2R3H Domain Containing 2
RAB1ARAB1ARas-related protein Rab-1A
RACGAP1RACGAP1Rac GTPase-activating protein 1
RACK1RACK1Receptor For Activated C Kinase 1[185]
RAD21RAD21Double-strand-break repair protein rad21 homolog
RAE1RAE1Ribonucleic Acid Export 1
RANRANRAN, Member RAS Oncogene Family
RANBP1RANBP1Ran-specific GTPase-activating protein
RANBP2RANBP2/NUP358RAN Binding Protein 2
RBBP4RBBP4Histone-binding protein RBBP4
RBFOX1RBFOX1RNA binding protein fox-1 homolog[186] [187] yes
RBFOX2RBFOX2RNA binding protein fox-1 homolog 2
RBFOX3RBFOX3RNA binding protein fox-1 homolog 3
RBM12BRBM12BRNA-binding protein 12B
RBM15RBM15RNA-binding protein 15
RBM17RBM17RNA-binding protein 17
RBM25RBM25RNA-binding protein 25
RBM26RBM26RNA-binding protein 26
RBM3RBM3RNA-binding protein 3
RBM38RBM38RNA-binding protein 38
RBM4RBM4RNA Binding Motif Protein 4[188]
RBM4BRBM4BRNA Binding Motif Protein 4B
RBM42RBM42RNA Binding Motif Protein 42
RBM45RBM45RNA Binding Motif Protein 45[189] [190]
RBM47RBM47RNA Binding Motif Protein 47
RBMS1RBMS1RNA-binding motif, single-stranded-interacting protein 1
RBMS2RBMS2RNA-binding motif, single-stranded-interacting protein 2
RBMXRBMXRNA Binding Motif Protein, X-Linked
RBPMSRBPMSRNA-binding protein with multiple splicing[191]
RC3H1Roquin-1Ring Finger And CCCH-Type Domains 1[192]
RC3H2MNABRing Finger And CCCH-Type Domains 2
RCC1RCC1Regulator of chromosome condensation
RCC2RCC2Protein RCC2
RECQLRECQL1RecQ Like Helicase
RFC3RFC3Replication factor C subunit 3
RFC4RFC4Replication factor C subunit 4
RGPD3RGPD3RanBP2-like and GRIP domain-containing protein 3
RHOARhoARas Homolog Family Member A
RNASELRNAse LRibonuclease L
RNF214RNF214RING finger protein 214
RNF219RNF219RING finger protein 219yes
RNF25RNF25Ring Finger Protein 25
RNH1RNH1Ribonuclease inhibitor
ROCK1ROCK1Rho Associated Coiled-Coil Containing Protein Kinase 1
RPS19Ribosomal Protein S19Ribosomal Protein S19
RPS340S Ribosomal Protein S340S Ribosomal Protein S3yes
RPS6Ribosomal Protein S6Ribosomal Protein S6
RPS11Ribosomal Protein S11Ribosomal Protein S11
RPS24Ribosomal Protein S24Ribosomal Protein S24
RPS6KA3RSK2Ribosomal Protein S6 Kinase A3[193]
RPS6KB1S6K1Ribosomal Protein S6 Kinase B1
RPS6KB2S6K2Ribosomal Protein S6 Kinase B2
RPTORRAPTORRegulatory Associated Protein of mTOR Complex 1
RSL1D1RSL1D1Ribosomal L1 domain-containing protein 1
RTCBRTCBtRNA-splicing ligase RtcB homolog, formerly C22orf28
RTRAFRTRAF (formerly C14orf166)RNA Transcription, Translation And Transport Factor
S100A7AS100A7AProtein S100-A7A
S100A9S100A9Protein S100-A9yes
SAFB2SAFB2Scaffold attachment factor B2yes
SAMD4ASMAUG1Sterile Alpha Motif Domain Containing 4A[194]
SAMD4BSMAUG2Sterile Alpha Motif Domain Containing 4B
SCAPERSCAPERS-Phase Cyclin A Associated Protein In The ER
SEC24CSEC24CProtein transport protein Sec24C
SECISBP2SECIS Binding Protein 2SECIS Binding Protein 2
SERBP1PAI-RBP1/SERBP1SERPINE1 mRNA Binding Protein 1[195]
SERPINE1PAI-1/Serpin E1Serpine Family E Member 1[196]
SF1SF1Splicing Factor 1
SFNSFN14-3-3 protein sigma
SFPQPSFSplicing Factor Proline And Glutamine Rich
SFRS3SFRS3Serine/arginine-rich splicing factor 3
SIPA1L1SIPA1L1Signal-induced proliferation-associated 1-like protein 1
SIRT6Sirtuin 6Sirtuin 6[197]
SLBPStem-Loop Binding ProteinStem-Loop Binding Protein
SMAP2SMAP2Small ArfGAP2
SMARCA1SMARCA1/SNF2L1Probable global transcription activator SNF2L1
SMC4SMC4Structural maintenance of chromosomes protein
SMG1SMG-1SMG1, Nonsense Mediated mRNA Decay Associated PI3K Related Kinase[198]
SMG6SMG6SMG6, Nonsense Mediated mRNA Decay Factor
SMG7SMG7SMG7, Nonsense Mediated mRNA Decay Factoryes
SMN1Survival of Motor NeuronSurvival Of Motor Neuron 1, Telomeric[199] [200]
SMU1SMU1WD40 repeat-containing protein SMU1
SMYD5SMYD5SMYD Family Member 5
SND1Tudor-SNStaphylococcal Nuclease And Tudor Domain Containing 1[201]
SNRPFSNRPFSmall nuclear ribonucleoprotein F
SNTB2SNTB2Beta-2-syntrophin
SOGA3SOGA3SOGA Family Member 3
SORBS1SORBS1Sorbin and SH3 domain-containing protein 1
SORBS3VinexinSorbin And SH3 Domain Containing 3[202]
SOX3SOX3SRY-Box 3
SPAG5AstrinSperm Associated Antigen 5
SPATS2SPATS2/SPATA10/SCR59Spermatogenesis Associated Serine Rich 2
SPATS2LSGNPSpermatogenesis Associated Serine Rich 2 Like[203]
SPECC1LSPECC1LCytospin-A
SQSTM1SQSTM1/p62Sequestosome 1
SRISRISorcin
SRP68Signal Recognition Particle 68Signal Recognition Particle 68
SRP9SRP9Signal Recognition Particle 9[204]
SRRTSRRTSerrate RNA effector molecule homolog
SRSF1ASF/SF2Serine And Arginine Rich Splicing Factor 1[205]
SRSF3SRp20Serine And Arginine Rich Splicing Factor 3[206] [207] [208]
SRSF4SRSF4Serine/arginine-rich splicing factor 4
SRSF5SRSF5/SRP40Serine/arginine-rich splicing factor 5
SRSF79G8Serine And Arginine Rich Splicing Factor 7
SRSF9SRSF9/SRP30CSerine/arginine-rich splicing factor 9
SS18L1SS18L1/CRESTSS18L1, nBAF Chromatin Remodeling Complex Subunit[209]
ST7ST7/FAM4A1/HELG/RAY1/TSG7Suppression Of Tumorigenicity 7yes
STAT1STAT1Signal transducer and activator of transcription 1-alpha/beta
STAU1Staufen 1Staufen Double-Stranded RNA Binding Protein 1[210]
STAU2Staufen 2Staufen Double-Stranded RNA Binding Protein 2yes
STIP1STIP1/HOPStress-induced-phosphoprotein 1
STRAPSTRAPSerine-threonine kinase receptor-associated protein
SUGP2SUGP2SURP and G-patch domain-containing protein 2
SUGT1SUGT1SGT1 Homolog, MIS12 Kinetochore Complex Assembly Cochaperone
SUN1SUN1SUN domain-containing protein 1
SYCP3SYCP3Synaptonemal complex protein 3
SYKSYKSpleen Associated Tyrosine Kinase
SYNCRIPSYNCRIPHeterogeneous nuclear ribonucleoprotein Q[211] yes
TAGLN3Transgelin 3Transgelin 3
TAF15TAF15TATA-Box Binding Protein Associated Factor 15
TARDBPTDP-43TAR DNA Binding Protein[212] [213] [214]
TBRG1TBRG1Transforming Growth Factor Beta Regulator 1
TCEA1TCEA1Transcription elongation factor A protein 1
TCP1TCP1T-complex protein 1 subunit alpha
TDRD3Tudor Domain Containing 3Tudor Domain Containing 3[215] [216] [217]
TDRD7Tudor Domain Containing 7Tudor Domain Containing 7
TERTTERTTelomerase Reverse Transcriptase[218]
THOC2THOC2THO Complex 2
THRAP3THRAP3Thyroid Hormone Receptor Associated Protein 3
TIA1TIA-1TIA1 Cytotoxic Granule Associated RNA Binding Protein[219] [220]
TIAL1TIARTIA1 Cytotoxic Granule Associated RNA Binding Protein Like 1
TMEM131TMEM131Transmembrane Protein 131yes
TMOD3TMOD3Tropomodulin-3
TNKSPARP-5aTankyrase
TNKS1BP1TNKS1BP1182 kDa tankyrase-1-binding proteinyes
TNPO1Transportin-1Transportin-1/Karyopherin (Importin) Beta 2[221] [222]
TNPO2Transportin-2Transportin-2
TNRC6ATNRC6ATrinucleotide repeat-containing gene 6A proteinyes
TNRC6BTNRC6BTrinucleotide repeat-containing gene 6B proteinyes
TNRC6CTNRC6CTrinucleotide repeat-containing gene 6C proteinyes
TOMM34TOMM34Mitochondrial import receptor subunit TOM34
TOP3BTopoisomerase (DNA) III BetaTopoisomerase (DNA) III Beta[223]
TPM1TPM1Tropomyosin alpha-1 chain
TPM2TPM2Tropomyosin beta chain
TPRTPRTranslocated Promoter Region, Nuclear Basket Protein
TRA2BTRA2BTransformer 2 Beta Homolog
TRAF2TRAF2TNF Receptor Associated Factor 2
TRDMT1DNMT2tRNA Aspartic Acid Methyltransferase 1[224]
TRIM21TRIM21E3 ubiquitin-protein ligase TRIM21
TRIM25TRIM25E3 ubiquitin/ISG15 ligase TRIM25
TRIM56TRIM56E3 ubiquitin-protein ligase TRIM56
TRIM71TRIM71E3 ubiquitin-protein ligase TRIM71
TRIP6TRIP6Thyroid receptor-interacting protein 6
TROVE2RORNPTROVE Domain Family Member 2
TTC17TTC17Tetratricopeptide Repeat Domain 17yes
TUBA1CTUBA1CTubulin alpha-1C chain
TUBA3CTUBA3CTubulin alpha-3C/D chain
TUBA4ATUBA4ATubulin alpha-4A chain
TUBB3TUBB3Tubulin beta-3 chain
TUBB8TUBB8Tubulin beta-8 chain
TUFMTUFMElongation factor Tu, mitochondrial
TXNTXNThioredoxin
TXNDC17TXNDC17Thioredoxin Domain Containing 17
U2AF1U2AF1Splicing factor U2AF 35 kDa subunit
UBA1UBA1Ubiquitin-like modifier-activating enzyme 1
UBAP2UBAP2Ubiquitin-associated protein 2
UBAP2LUBAP2LUbiquitin-associated protein 2-like[225] [226]
UBBUbiquitinUbiquitin
UBL5Ubiquitin Like 5Ubiquitin Like 5
UBQLN2Ubiquilin 2Ubiquilin 2[227]
ULK1ULK1Unc-51 Like Autophagy Activating Kinase 1[228]
ULK2ULK2Unc-51 Like Autophagy Activating Kinase 2
UPF1UPF1UPF1, RNA Helicase and ATPaseyes
UPF2UPF2UPF2, RNA Helicase and ATPase
UPF3BUPF3BUPF3B, Regulator of Nonsense Mediated mRNA Decay
USP10USP10Ubiquitin Specific Peptidase 10
USP11USP11Ubiquitin Specific Peptidase 11
USP13USP13Ubiquitin Specific Peptidase 13[229]
USP5USP5Ubiquitin carboxyl-terminal hydrolase 5
USP9XUSP9XUbiquitin Specific Peptidase 9, X-Linked
UTP18UTP18UTP18, Small Subunit Processome Component
VASPVASPVasodilator-stimulated phosphoprotein
VBP1VBP1VHL Binding Protein 1
VCPVCPValosin Containing Protein[230]
WBP2WBP2WW Domain Binding Protein 2
WDR47WDR47WD Repeat Domain 47
WDR62WDR62WD Repeat Domain 62
XPO1XPO1/CRM1Exportin 1
XRN1XRN15'-3' Exoribonuclease 1yes
XRN2XRN25'-3' Exoribonuclease 2
YARSYARSTyrosine—tRNA ligase, cytoplasmic
YBX1YB-1Y-Box Binding Protein 1[231]
YBX3YBX3/ZONABY-box-binding protein 3
YES1YES1Tyrosine-protein kinase Yes
YLPM1YLPM1YLP Motif Containing 1
YTHDF1YTHDF1YTH domain family protein 1[232] [233]
YTHDF2YTHDF2YTH domain family protein 2yes
YTHDF3YTHDF3YTH domain family protein 3[234]
YWHAB14-3-3Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Beta
YWHAH14-3-314-3-3 protein eta
YWHAQ14-3-314-3-3 protein theta
ZBP1ZBP1Z-DNA Binding Protein 1[235] [236]
ZCCHC11ZCCHC11Zinc finger CCCH domain-containing protein 11
ZCCHC14ZCCHC14Zinc finger CCCH domain-containing protein 14
ZC3H11AZC3H11AZinc finger CCCH domain-containing protein 11a
ZC3H14ZC3H14Zinc finger CCCH domain-containing protein 14
ZCCHC2ZCCHC2Zinc finger CCCH domain-containing protein 2
ZCCHC3ZCCHC3Zinc finger CCCH domain-containing protein 3
ZC3H7AZC3H7AZinc finger CCCH domain-containing protein 7A
ZC3H7BZC3H7BZinc finger CCCH domain-containing protein 7B
ZC3HAV1PARP-13.1/PARP-13.2/ARTD13Zinc Finger CCCH-Type Containing, Antiviral 1yes
ZFAND1ZFAND1Zinc Finger AN1-Type Containing 1
ZFP36TTP/TIS11ZFP36 Ring Finger Protein/Trisetrapolin[237] [238] [239] yes
ZNF598ZNF598Zinc finger protein 598
ZNF638ZNF638Zinc finger protein 638

Further reading

External links

Laboratories:

Notes and References

  1. Gutierrez-Beltran E, Moschou PN, Smertenko AP, Bozhkov PV . Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis . The Plant Cell . 27 . 3 . 926–943 . March 2015 . 25736060 . 4558657 . 10.1105/tpc.114.134494 .
  2. Hirose T, Ninomiya K, Nakagawa S, Yamazaki T . A guide to membraneless organelles and their various roles in gene regulation . Nature Reviews. Molecular Cell Biology . 24 . 4 . 288–304 . April 2023 . 36424481 . 10.1038/s41580-022-00558-8 . 253879916 .
  3. Kayali F, Montie HL, Rafols JA, DeGracia DJ . Prolonged translation arrest in reperfused hippocampal cornu Ammonis 1 is mediated by stress granules . Neuroscience . 134 . 4 . 1223–1245 . 2005 . 16055272 . 10.1016/j.neuroscience.2005.05.047 . 15066267 .
  4. Nover L, Scharf KD, Neumann D . Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs . Molecular and Cellular Biology . 9 . 3 . 1298–1308 . March 1989 . 2725500 . 362722 . 10.1128/mcb.9.3.1298 .
  5. http://anderson.bwh.harvard.edu/01-Lab%20Members/01-IndividualPages/PJA.html Paul J. Anderson, Brigham and Women's Hospital
  6. Mollet S, Cougot N, Wilczynska A, Dautry F, Kress M, Bertrand E, Weil D . Translationally repressed mRNA transiently cycles through stress granules during stress . Molecular Biology of the Cell . 19 . 10 . 4469–4479 . October 2008 . 18632980 . 2555929 . 10.1091/mbc.E08-05-0499 .
  7. Khong A, Parker R . mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction . The Journal of Cell Biology . 217 . 12 . 4124–4140 . December 2018 . 30322972 . 6279387 . 10.1083/jcb.201806183 .
  8. Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R . The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in Stress Granules . Molecular Cell . 68 . 4 . 808–820.e5 . November 2017 . 29129640 . 5728175 . 10.1016/j.molcel.2017.10.015 .
  9. Khong A, Jain S, Matheny T, Wheeler JR, Parker R . Isolation of mammalian stress granule cores for RNA-Seq analysis . Methods . 137 . 49–54 . March 2018 . 29196162 . 5866748 . 10.1016/j.ymeth.2017.11.012 .
  10. Forreiter C, Kirschner M, Nover L . Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo . The Plant Cell . 9 . 12 . 2171–2181 . December 1997 . 9437862 . 157066 . 10.1105/tpc.9.12.2171 .
  11. Löw D, Brändle K, Nover L, Forreiter C . Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo . Planta . 211 . 4 . 575–582 . September 2000 . 11030557 . 10.1007/s004250000315 . 2000Plant.211..575L . 9646838 .
  12. Stuger R, Ranostaj S, Materna T, Forreiter C . Messenger RNA-binding properties of nonpolysomal ribonucleoproteins from heat-stressed tomato cells . Plant Physiology . 120 . 1 . 23–32 . May 1999 . 10318680 . 59255 . 10.1104/pp.120.1.23 .
  13. Schmid HP, Akhayat O, Martins De Sa C, Puvion F, Koehler K, Scherrer K . The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins . The EMBO Journal . 3 . 1 . 29–34 . January 1984 . 6200323 . 557293 . 10.1002/j.1460-2075.1984.tb01757.x .
  14. Aulas A, Lyons SM, Fay MM, Anderson P, Ivanov P . Nitric oxide triggers the assembly of "type II" stress granules linked to decreased cell viability . Cell Death & Disease . 9 . 11 . 1129 . November 2018 . 30425239 . 6234215 . 10.1038/s41419-018-1173-x .
  15. Berchtold D, Battich N, Pelkmans L . A Systems-Level Study Reveals Regulators of Membrane-less Organelles in Human Cells . Molecular Cell . 72 . 6 . 1035–1049.e5 . December 2018 . 30503769 . 10.1016/j.molcel.2018.10.036 . free .
  16. Aulas A, Fay MM, Lyons SM, Achorn CA, Kedersha N, Anderson P, Ivanov P . Stress-specific differences in assembly and composition of stress granules and related foci . Journal of Cell Science . 130 . 5 . 927–937 . March 2017 . 28096475 . 5358336 . 10.1242/jcs.199240 .
  17. Qifti A, Jackson L, Singla A, Garwain O, Scarlata S . Stimulation of phospholipase Cβ1 by Gαq promotes the assembly of stress granule proteins . Science Signaling . 14 . 705 . eaav1012 . October 2021 . 34665639 . 10.1126/scisignal.aav1012 .
  18. Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P . Stress granule assembly is mediated by prion-like aggregation of TIA-1 . Molecular Biology of the Cell . 15 . 12 . 5383–5398 . December 2004 . 15371533 . 532018 . 10.1091/mbc.E04-08-0715 .
  19. Ivanov PA, Chudinova EM, Nadezhdina ES . Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation . Experimental Cell Research . 290 . 2 . 227–233 . November 2003 . 14567982 . 10.1016/S0014-4827(03)00290-8 .
  20. Mahboubi H, Barisé R, Stochaj U . 5'-AMP-activated protein kinase alpha regulates stress granule biogenesis . Biochimica et Biophysica Acta . 1853 . 7 . 1725–1737 . July 2015 . 25840010 . 10.1016/j.bbamcr.2015.03.015 . free .
  21. Ohn T, Kedersha N, Hickman T, Tisdale S, Anderson P . A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly . Nature Cell Biology . 10 . 10 . 1224–1231 . October 2008 . 18794846 . 4318256 . 10.1038/ncb1783 .
  22. Tsai NP, Wei LN . RhoA/ROCK1 signaling regulates stress granule formation and apoptosis . Cellular Signalling . 22 . 4 . 668–675 . April 2010 . 20004716 . 2815184 . 10.1016/j.cellsig.2009.12.001 .
  23. Van Treeck B, Protter DS, Matheny T, Khong A, Link CD, Parker R . RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome . Proceedings of the National Academy of Sciences of the United States of America . 115 . 11 . 2734–2739 . March 2018 . 29483269 . 5856561 . 10.1073/pnas.1800038115 . 2018PNAS..115.2734V . free .
  24. Chalupníková K, Lattmann S, Selak N, Iwamoto F, Fujiki Y, Nagamine Y . Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain . The Journal of Biological Chemistry . 283 . 50 . 35186–35198 . December 2008 . 18854321 . 3259895 . 10.1074/jbc.M804857200 . free .
  25. Hilliker A, Gao Z, Jankowsky E, Parker R . The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex . Molecular Cell . 43 . 6 . 962–972 . September 2011 . 21925384 . 3268518 . 10.1016/j.molcel.2011.08.008 .
  26. Epling LB, Grace CR, Lowe BR, Partridge JF, Enemark EJ . Cancer-associated mutants of RNA helicase DDX3X are defective in RNA-stimulated ATP hydrolysis . Journal of Molecular Biology . 427 . 9 . 1779–1796 . May 2015 . 25724843 . 4402148 . 10.1016/j.jmb.2015.02.015 .
  27. Valentin-Vega YA, Wang YD, Parker M, Patmore DM, Kanagaraj A, Moore J, Rusch M, Finkelstein D, Ellison DW, Gilbertson RJ, Zhang J, Kim HJ, Taylor JP . Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation . Scientific Reports . 6 . 1 . 25996 . May 2016 . 27180681 . 4867597 . 10.1038/srep25996 . 2016NatSR...625996V .
  28. Van Treeck B, Parker R . Emerging Roles for Intermolecular RNA-RNA Interactions in RNP Assemblies . Cell . 174 . 4 . 791–802 . August 2018 . 30096311 . 6200146 . 10.1016/j.cell.2018.07.023 .
  29. Adivarahan S, Livingston N, Nicholson B, Rahman S, Wu B, Rissland OS, Zenklusen D . Spatial Organization of Single mRNPs at Different Stages of the Gene Expression Pathway . Molecular Cell . 72 . 4 . 727–738.e5 . November 2018 . 30415950 . 6592633 . 10.1016/j.molcel.2018.10.010 .
  30. Anders M, Chelysheva I, Goebel I, Trenkner T, Zhou J, Mao Y, Verzini S, Qian SB, Ignatova Z . Dynamic m6A methylation facilitates mRNA triaging to stress granules . Life Science Alliance . 1 . 4 . e201800113 . August 2018 . 30456371 . 6238392 . 10.26508/lsa.201800113 .
  31. Kudrin P, Singh A, Meierhofer D, Kuśnierczyk A, Ørom UA . N4-acetylcytidine (ac4C) promotes mRNA localization to stress granules . EMBO Reports . 25 . 4 . 1814–1834 . April 2024 . 38413733 . 11014937 . 10.1038/s44319-024-00098-6 . free .
  32. Tauber D, Tauber G, Khong A, Van Treeck B, Pelletier J, Parker R . Modulation of RNA Condensation by the DEAD-Box Protein eIF4A . Cell . 180 . 3 . 411–426.e16 . February 2020 . 31928844 . 7194247 . 10.1016/j.cell.2019.12.031 .
  33. Hubstenberger A, Courel M, Bénard M, Souquere S, Ernoult-Lange M, Chouaib R, Yi Z, Morlot JB, Munier A, Fradet M, Daunesse M, Bertrand E, Pierron G, Mozziconacci J, Kress M, Weil D . P-Body Purification Reveals the Condensation of Repressed mRNA Regulons . Molecular Cell . 68 . 1 . 144–157.e5 . October 2017 . 28965817 . 10.1016/j.molcel.2017.09.003 . free .
  34. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P . Stress granules and processing bodies are dynamically linked sites of mRNP remodeling . The Journal of Cell Biology . 169 . 6 . 871–884 . June 2005 . 15967811 . 2171635 . 10.1083/jcb.200502088 .
  35. Buchan JR, Muhlrad D, Parker R . P bodies promote stress granule assembly in Saccharomyces cerevisiae . The Journal of Cell Biology . 183 . 3 . 441–455 . November 2008 . 18981231 . 2575786 . 10.1083/jcb.200807043 .
  36. PhD . Figley MD . 2015 . Profilin 1, stress granules, and ALS pathogenesis . Stanford University .
  37. Aulas A, Vande Velde C . Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? . Frontiers in Cellular Neuroscience . 9 . 423 . 2015 . 26557057 . 4615823 . 10.3389/fncel.2015.00423 . free .
  38. Youn JY, Dyakov BJ, Zhang J, Knight JD, Vernon RM, Forman-Kay JD, Gingras AC . Properties of Stress Granule and P-Body Proteomes . English . Molecular Cell . 76 . 2 . 286–294 . October 2019 . 31626750 . 10.1016/j.molcel.2019.09.014 . free .
  39. Aulas A, Fay MM, Szaflarski W, Kedersha N, Anderson P, Ivanov P . Methods to Classify Cytoplasmic Foci as Mammalian Stress Granules . Journal of Visualized Experiments . 123 . May 2017 . 28570526 . 5607937 . 10.3791/55656 .
  40. Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R . Distinct stages in stress granule assembly and disassembly . eLife . 5 . September 2016 . 27602576 . 5014549 . 10.7554/eLife.18413 . free .
  41. Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R . ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure . Cell . 164 . 3 . 487–498 . January 2016 . 26777405 . 4733397 . 10.1016/j.cell.2015.12.038 .
  42. Wheeler JR, Jain S, Khong A, Parker R . Isolation of yeast and mammalian stress granule cores . Methods . 126 . 12–17 . August 2017 . 28457979 . 5924690 . 10.1016/j.ymeth.2017.04.020 .
  43. Markmiller S, Soltanieh S, Server KL, Mak R, Jin W, Fang MY, Luo EC, Krach F, Yang D, Sen A, Fulzele A, Wozniak JM, Gonzalez DJ, Kankel MW, Gao FB, Bennett EJ, Lécuyer E, Yeo GW . Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules . English . Cell . 172 . 3 . 590–604.e13 . January 2018 . 29373831 . 5969999 . 10.1016/j.cell.2017.12.032 .
  44. Youn JY, Dunham WH, Hong SJ, Knight JD, Bashkurov M, Chen GI, Bagci H, Rathod B, MacLeod G, Eng SW, Angers S, Morris Q, Fabian M, Côté JF, Gingras AC . High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies . English . Molecular Cell . 69 . 3 . 517–532.e11 . February 2018 . 29395067 . 10.1016/j.molcel.2017.12.020 . free .
  45. Marmor-Kollet H, Siany A, Kedersha N, Knafo N, Rivkin N, Danino YM, Moens TG, Olender T, Sheban D, Cohen N, Dadosh T, Addadi Y, Ravid R, Eitan C, Toth Cohen B, Hofmann S, Riggs CL, Advani VM, Higginbottom A, Cooper-Knock J, Hanna JH, Merbl Y, Van Den Bosch L, Anderson P, Ivanov P, Geiger T, Hornstein E . Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis . English . Molecular Cell . 80 . 5 . 876–891.e6 . December 2020 . 33217318 . 7816607 . 10.1016/j.molcel.2020.10.032 . free .
  46. Weissbach R, Scadden AD . Tudor-SN and ADAR1 are components of cytoplasmic stress granules . RNA . 18 . 3 . 462–471 . March 2012 . 22240577 . 3285934 . 10.1261/rna.027656.111 .
  47. Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, Malim MH . Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules . Journal of Virology . 81 . 5 . 2165–2178 . March 2007 . 17166910 . 1865933 . 10.1128/JVI.02287-06 .
  48. Goodier JL, Zhang L, Vetter MR, Kazazian HH . LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex . Molecular and Cellular Biology . 27 . 18 . 6469–6483 . September 2007 . 17562864 . 2099616 . 10.1128/MCB.00332-07 .
  49. Detzer A, Engel C, Wünsche W, Sczakiel G . Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells . Nucleic Acids Research . 39 . 7 . 2727–2741 . April 2011 . 21148147 . 3074141 . 10.1093/nar/gkq1216 .
  50. Lou Q, Hu Y, Ma Y, Dong Z . RNA interference may suppress stress granule formation by preventing argonaute 2 recruitment . American Journal of Physiology. Cell Physiology . 316 . 1 . C81–C91 . January 2019 . 30404558 . 6383145 . 10.1152/ajpcell.00251.2018 .
  51. Kolobova E, Efimov A, Kaverina I, Rishi AK, Schrader JW, Ham AJ, Larocca MC, Goldenring JR . Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules . Experimental Cell Research . 315 . 3 . 542–555 . February 2009 . 19073175 . 2788823 . 10.1016/j.yexcr.2008.11.011 .
  52. Pizzo E, Sarcinelli C, Sheng J, Fusco S, Formiggini F, Netti P, Yu W, D'Alessio G, Hu GF . Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival . Journal of Cell Science . 126 . Pt 18 . 4308–4319 . September 2013 . 23843625 . 3772394 . 10.1242/jcs.134551 .
  53. Pare JM, Tahbaz N, López-Orozco J, LaPointe P, Lasko P, Hobman TC . Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies . Molecular Biology of the Cell . 20 . 14 . 3273–3284 . July 2009 . 19458189 . 2710822 . 10.1091/mbc.E09-01-0082 .
  54. Ralser M, Albrecht M, Nonhoff U, Lengauer T, Lehrach H, Krobitsch S . An integrative approach to gain insights into the cellular function of human ataxin-2 . Journal of Molecular Biology . 346 . 1 . 203–214 . February 2005 . 15663938 . 10.1016/j.jmb.2004.11.024 . free . 11858/00-001M-0000-0010-86DE-D .
  55. Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, Lehrach H, Krobitsch S . Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules . Molecular Biology of the Cell . 18 . 4 . 1385–1396 . April 2007 . 17392519 . 1838996 . 10.1091/mbc.E06-12-1120 .
  56. Kaehler C, Isensee J, Nonhoff U, Terrey M, Hucho T, Lehrach H, Krobitsch S . Ataxin-2-like is a regulator of stress granules and processing bodies . PLOS ONE . 7 . 11 . e50134 . 2012 . 23209657 . 3507954 . 10.1371/journal.pone.0050134 . free . 2012PLoSO...750134K .
  57. Nihei Y, Ito D, Suzuki N . Roles of ataxin-2 in pathological cascades mediated by TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma (FUS) . The Journal of Biological Chemistry . 287 . 49 . 41310–41323 . November 2012 . 23048034 . 3510829 . 10.1074/jbc.M112.398099 . free .
  58. Figley MD, Bieri G, Kolaitis RM, Taylor JP, Gitler AD . Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics . The Journal of Neuroscience . 34 . 24 . 8083–8097 . June 2014 . 24920614 . 4051967 . 10.1523/JNEUROSCI.0543-14.2014 .
  59. Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, Yang Z, Wu J, Li Y, Pan Q, Yu J, Martin EW, Mittag T, Kim HJ, Taylor JP . G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules . Cell . 181 . 2 . 325–345.e28 . April 2020 . 32302571 . 7448383 . 10.1016/j.cell.2020.03.046 .
  60. Kim B, Rhee K . BOULE, a Deleted in Azoospermia Homolog, Is Recruited to Stress Granules in the Mouse Male Germ Cells . PLOS ONE . 11 . 9 . e0163015 . 2016 . 27632217 . 5024984 . 10.1371/journal.pone.0163015 . free . 2016PLoSO..1163015K .
  61. Maharjan N, Künzli C, Buthey K, Saxena S . C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress . Molecular Neurobiology . 54 . 4 . 3062–3077 . May 2017 . 27037575 . 10.1007/s12035-016-9850-1 . 27449387 .
  62. Chitiprolu M, Jagow C, Tremblay V, Bondy-Chorney E, Paris G, Savard A, Palidwor G, Barry FA, Zinman L, Keith J, Rogaeva E, Robertson J, Lavallée-Adam M, Woulfe J, Couture JF, Côté J, Gibbings D . A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy . Nature Communications . 9 . 1 . 2794 . July 2018 . 30022074 . 6052026 . 10.1038/s41467-018-05273-7 . 2018NatCo...9.2794C .
  63. Decca MB, Carpio MA, Bosc C, Galiano MR, Job D, Andrieux A, Hallak ME . Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules . The Journal of Biological Chemistry . 282 . 11 . 8237–8245 . March 2007 . 17197444 . 2702537 . 10.1074/jbc.M608559200 . free .
  64. Solomon S, Xu Y, Wang B, David MD, Schubert P, Kennedy D, Schrader JW . Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs . Molecular and Cellular Biology . 27 . 6 . 2324–2342 . March 2007 . 17210633 . 1820512 . 10.1128/MCB.02300-06 .
  65. Ratovitski T, Chighladze E, Arbez N, Boronina T, Herbrich S, Cole RN, Ross CA . Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis . Cell Cycle . 11 . 10 . 2006–2021 . May 2012 . 22580459 . 3359124 . 10.4161/cc.20423 .
  66. Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P, Anderson P . G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits . The Journal of Cell Biology . 212 . 7 . 845–860 . March 2016 . 27022092 . 4810302 . 10.1083/jcb.201508028 .
  67. Aulas A, Caron G, Gkogkas CG, Mohamed NV, Destroismaisons L, Sonenberg N, Leclerc N, Parker JA, Vande Velde C . G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA . The Journal of Cell Biology . 209 . 1 . 73–84 . April 2015 . 25847539 . 4395486 . 10.1083/jcb.201408092 .
  68. Reineke LC, Kedersha N, Langereis MA, van Kuppeveld FJ, Lloyd RE . Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1 . mBio . 6 . 2 . e02486 . March 2015 . 25784705 . 4453520 . 10.1128/mBio.02486-14 .
  69. Baguet A, Degot S, Cougot N, Bertrand E, Chenard MP, Wendling C, Kessler P, Le Hir H, Rio MC, Tomasetto C . The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly . Journal of Cell Science . 120 . Pt 16 . 2774–2784 . August 2007 . 17652158 . 10.1242/jcs.009225 . free .
  70. Vessey JP, Vaccani A, Xie Y, Dahm R, Karra D, Kiebler MA, Macchi P . Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules . The Journal of Neuroscience . 26 . 24 . 6496–6508 . June 2006 . 16775137 . 6674044 . 10.1523/JNEUROSCI.0649-06.2006 . free .
  71. Moujalled D, James JL, Yang S, Zhang K, Duncan C, Moujalled DM, Parker SJ, Caragounis A, Lidgerwood G, Turner BJ, Atkin JD, Grubman A, Liddell JR, Proepper C, Boeckers TM, Kanninen KM, Blair I, Crouch PJ, White AR . Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43 . Human Molecular Genetics . 24 . 6 . 1655–1669 . March 2015 . 25410660 . 10.1093/hmg/ddu578 . free .
  72. Fujimura K, Kano F, Murata M . Dual localization of the RNA binding protein CUGBP-1 to stress granule and perinucleolar compartment . Experimental Cell Research . 314 . 3 . 543–553 . February 2008 . 18164289 . 10.1016/j.yexcr.2007.10.024 .
  73. Fathinajafabadi A, Pérez-Jiménez E, Riera M, Knecht E, Gonzàlez-Duarte R . CERKL, a retinal disease gene, encodes an mRNA-binding protein that localizes in compact and untranslated mRNPs associated with microtubules . PLOS ONE . 9 . 2 . e87898 . 2014 . 24498393 . 3912138 . 10.1371/journal.pone.0087898 . free . 2014PLoSO...987898F .
  74. De Leeuw F, Zhang T, Wauquier C, Huez G, Kruys V, Gueydan C . The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor . Experimental Cell Research . 313 . 20 . 4130–4144 . December 2007 . 17967451 . 10.1016/j.yexcr.2007.09.017 .
  75. Rojas M, Farr GW, Fernandez CF, Lauden L, McCormack JC, Wolin SL . Yeast Gis2 and its human ortholog CNBP are novel components of stress-induced RNP granules . PLOS ONE . 7 . 12 . e52824 . 2012 . 23285195 . 3528734 . 10.1371/journal.pone.0052824 . free . 2012PLoSO...752824R .
  76. Cougot N, Babajko S, Séraphin B . Cytoplasmic foci are sites of mRNA decay in human cells . The Journal of Cell Biology . 165 . 1 . 31–40 . April 2004 . 15067023 . 2172085 . 10.1083/jcb.200309008 .
  77. Fujimura K, Kano F, Murata M . Identification of PCBP2, a facilitator of IRES-mediated translation, as a novel constituent of stress granules and processing bodies . RNA . 14 . 3 . 425–431 . March 2008 . 18174314 . 2248264 . 10.1261/rna.780708 .
  78. Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D . The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules . Journal of Cell Science . 118 . Pt 5 . 981–992 . March 2005 . 15731006 . 10.1242/jcs.01692 . free .
  79. Reineke LC, Tsai WC, Jain A, Kaelber JT, Jung SY, Lloyd RE . Casein Kinase 2 Is Linked to Stress Granule Dynamics through Phosphorylation of the Stress Granule Nucleating Protein G3BP1 . Molecular and Cellular Biology . 37 . 4 . e00596–16 . February 2017 . 27920254 . 5288577 . 10.1128/MCB.00596-16 .
  80. Kim JE, Ryu I, Kim WJ, Song OK, Ryu J, Kwon MY, Kim JH, Jang SK . Proline-rich transcript in brain protein induces stress granule formation . Molecular and Cellular Biology . 28 . 2 . 803–813 . January 2008 . 17984221 . 2223406 . 10.1128/MCB.01226-07 .
  81. Kim B, Cooke HJ, Rhee K . DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress . Development . 139 . 3 . 568–578 . February 2012 . 22223682 . 10.1242/dev.075846 . free .
  82. Onishi H, Kino Y, Morita T, Futai E, Sasagawa N, Ishiura S . MBNL1 associates with YB-1 in cytoplasmic stress granules . Journal of Neuroscience Research . 86 . 9 . 1994–2002 . July 2008 . 18335541 . 10.1002/jnr.21655 . 9431966 .
  83. Yasuda-Inoue M, Kuroki M, Ariumi Y . DDX3 RNA helicase is required for HIV-1 Tat function . Biochemical and Biophysical Research Communications . 441 . 3 . 607–611 . November 2013 . 24183723 . 10.1016/j.bbrc.2013.10.107 .
  84. Goulet I, Boisvenue S, Mokas S, Mazroui R, Côté J . TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules . Human Molecular Genetics . 17 . 19 . 3055–3074 . October 2008 . 18632687 . 2536506 . 10.1093/hmg/ddn203 .
  85. Valentin-Vega YA, Wang YD, Parker M, Patmore DM, Kanagaraj A, Moore J, Rusch M, Finkelstein D, Ellison DW, Gilbertson RJ, Zhang J, Kim HJ, Taylor JP . Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation . Scientific Reports . 6 . 25996 . May 2016 . 27180681 . 4867597 . 10.1038/srep25996 . 2016NatSR...625996V .
  86. Saito M, Hess D, Eglinger J, Fritsch AW, Kreysing M, Weinert BT, Choudhary C, Matthias P . Acetylation of intrinsically disordered regions regulates phase separation . Nature Chemical Biology . 15 . 1 . 51–61 . January 2019 . 30531905 . 10.1038/s41589-018-0180-7 . 54471609 . free .
  87. Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, Sambhara S, Kawaguchi A, Osari S, Nagata K, Matsumiya T, Namiki H, Yoneyama M, Fujita T . Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity . PLOS ONE . 7 . 8 . e43031 . 2012 . 22912779 . 3418241 . 10.1371/journal.pone.0043031 . free . 2012PLoSO...743031O .
  88. Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Kläsener K, Ruf S, Sonntag AG, Maerz L, Grellscheid SN, Kremmer E, Nitschke R, Kuehn EW, Jonker JW, Groen AK, Reth M, Hall MN, Baumeister R . Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells . Cell . 154 . 4 . 859–874 . August 2013 . 23953116 . 10.1016/j.cell.2013.07.031 . free .
  89. Bish R, Cuevas-Polo N, Cheng Z, Hambardzumyan D, Munschauer M, Landthaler M, Vogel C . Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins . Biomolecules . 5 . 3 . 1441–1466 . July 2015 . 26184334 . 4598758 . 10.3390/biom5031441 . free .
  90. Salleron L, Magistrelli G, Mary C, Fischer N, Bairoch A, Lane L . DERA is the human deoxyribose phosphate aldolase and is involved in stress response . Biochimica et Biophysica Acta (BBA) - Molecular Cell Research . 1843 . 12 . 2913–2925 . December 2014 . 25229427 . 10.1016/j.bbamcr.2014.09.007 . free .
  91. Ogawa F, Kasai M, Akiyama T . A functional link between Disrupted-In-Schizophrenia 1 and the eukaryotic translation initiation factor 3 . Biochemical and Biophysical Research Communications . 338 . 2 . 771–776 . December 2005 . 16243297 . 10.1016/j.bbrc.2005.10.013 .
  92. Belli V, Matrone N, Sagliocchi S, Incarnato R, Conte A, Pizzo E, Turano M, Angrisani A, Furia M . A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules . Biochimica et Biophysica Acta (BBA) - Molecular Cell Research . 1866 . 12 . 118529 . December 2019 . 31412274 . 10.1016/j.bbamcr.2019.118529 . free .
  93. Loschi M, Leishman CC, Berardone N, Boccaccio GL . Dynein and kinesin regulate stress-granule and P-body dynamics . Journal of Cell Science . 122 . Pt 21 . 3973–3982 . November 2009 . 19825938 . 2773196 . 10.1242/jcs.051383 .
  94. Geng Q, Xhabija B, Knuckle C, Bonham CA, Vacratsis PO . The Atypical Dual Specificity Phosphatase hYVH1 Associates with Multiple Ribonucleoprotein Particles . The Journal of Biological Chemistry . 292 . 2 . 539–550 . January 2017 . 27856639 . 5241730 . 10.1074/jbc.M116.715607 . free .
  95. Tsai NP, Tsui YC, Wei LN . Dynein motor contributes to stress granule dynamics in primary neurons . Neuroscience . 159 . 2 . 647–656 . March 2009 . 19171178 . 2650738 . 10.1016/j.neuroscience.2008.12.053 .
  96. Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L . Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling . Cell . 152 . 4 . 791–805 . February 2013 . 23415227 . 10.1016/j.cell.2013.01.033 . free .
  97. Shigunov P, Sotelo-Silveira J, Stimamiglio MA, Kuligovski C, Irigoín F, Badano JL, Munroe D, Correa A, Dallagiovanna B . Ribonomic analysis of human DZIP1 reveals its involvement in ribonucleoprotein complexes and stress granules . BMC Molecular Biology . 15 . 12 . July 2014 . 24993635 . 4091656 . 10.1186/1471-2199-15-12 . free .
  98. Kimball SR, Horetsky RL, Ron D, Jefferson LS, Harding HP . Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes . American Journal of Physiology. Cell Physiology . 284 . 2 . C273–C284 . February 2003 . 12388085 . 10.1152/ajpcell.00314.2002 . 14681272 .
  99. Reineke LC, Lloyd RE . The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses . Journal of Virology . 89 . 5 . 2575–2589 . March 2015 . 25520508 . 4325707 . 10.1128/JVI.02791-14 .
  100. Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J, Anderson P . Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules . Molecular Biology of the Cell . 13 . 1 . 195–210 . January 2002 . 11809833 . 65082 . 10.1091/mbc.01-05-0221 .
  101. Li CH, Ohn T, Ivanov P, Tisdale S, Anderson P . eIF5A promotes translation elongation, polysome disassembly and stress granule assembly . PLOS ONE . 5 . 4 . e9942 . April 2010 . 20376341 . 2848580 . 10.1371/journal.pone.0009942 . free . 2010PLoSO...5.9942L .
  102. Kim JA, Jayabalan AK, Kothandan VK, Mariappan R, Kee Y, Ohn T . Identification of Neuregulin-2 as a novel stress granule component . BMB Reports . 49 . 8 . 449–454 . August 2016 . 27345716 . 5070733 . 10.5483/BMBRep.2016.49.8.090 .
  103. Dammer EB, Fallini C, Gozal YM, Duong DM, Rossoll W, Xu P, Lah JJ, Levey AI, Peng J, Bassell GJ, Seyfried NT . Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination . PLOS ONE . 7 . 6 . e38658 . 2012 . 22761693 . 3380899 . 10.1371/journal.pone.0038658 . free . 2012PLoSO...738658D .
  104. Jongjitwimol J, Baldock RA, Morley SJ, Watts FZ . Sumoylation of eIF4A2 affects stress granule formation . Journal of Cell Science . 129 . 12 . 2407–2415 . June 2016 . 27160682 . 4920252 . 10.1242/jcs.184614 .
  105. Kim SH, Dong WK, Weiler IJ, Greenough WT . Fragile X mental retardation protein shifts between polyribosomes and stress granules after neuronal injury by arsenite stress or in vivo hippocampal electrode insertion . The Journal of Neuroscience . 26 . 9 . 2413–2418 . March 2006 . 16510718 . 6793656 . 10.1523/JNEUROSCI.3680-05.2006 . free .
  106. Mazroui R, Di Marco S, Kaufman RJ, Gallouzi IE . Inhibition of the ubiquitin-proteasome system induces stress granule formation . Molecular Biology of the Cell . 18 . 7 . 2603–2618 . July 2007 . 17475769 . 1924830 . 10.1091/mbc.E06-12-1079 .
  107. Frydryskova K, Masek T, Borcin K, Mrvova S, Venturi V, Pospisek M . Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules . BMC Molecular Biology . 17 . 1 . 21 . August 2016 . 27578149 . 5006505 . 10.1186/s12867-016-0072-x . free .
  108. Battle DJ, Kasim M, Wang J, Dreyfuss G . SMN-independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate . The Journal of Biological Chemistry . 282 . 38 . 27953–27959 . September 2007 . 17640873 . 10.1074/jbc.M702317200 . free .
  109. Kim WJ, Back SH, Kim V, Ryu I, Jang SK . Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions . Molecular and Cellular Biology . 25 . 6 . 2450–2462 . March 2005 . 15743837 . 1061607 . 10.1128/MCB.25.6.2450-2462.2005 .
  110. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M . Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways . Nature Cell Biology . 10 . 11 . 1324–1332 . November 2008 . 18836437 . 10.1038/ncb1791 . 21242075 .
  111. Gallouzi IE, Brennan CM, Stenberg MG, Swanson MS, Eversole A, Maizels N, Steitz JA . HuR binding to cytoplasmic mRNA is perturbed by heat shock . Proceedings of the National Academy of Sciences of the United States of America . 97 . 7 . 3073–3078 . March 2000 . 10737787 . 16194 . 10.1073/pnas.97.7.3073 . free . 2000PNAS...97.3073G .
  112. Thomas MG, Martinez Tosar LJ, Loschi M, Pasquini JM, Correale J, Kindler S, Boccaccio GL . Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes . Molecular Biology of the Cell . 16 . 1 . 405–420 . January 2005 . 15525674 . 539183 . 10.1091/mbc.E04-06-0516 .
  113. Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, Silani V, Ratti A . TDP-43 is recruited to stress granules in conditions of oxidative insult . Journal of Neurochemistry . 111 . 4 . 1051–1061 . November 2009 . 19765185 . 10.1111/j.1471-4159.2009.06383.x . 8630114 . free .
  114. Meyerowitz J, Parker SJ, Vella LJ, Ng DC, Price KA, Liddell JR, Caragounis A, Li QX, Masters CL, Nonaka T, Hasegawa M, Bogoyevitch MA, Kanninen KM, Crouch PJ, White AR . C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress . Molecular Neurodegeneration . 6 . 57 . August 2011 . 21819629 . 3162576 . 10.1186/1750-1326-6-57 . free .
  115. Burry RW, Smith CL . HuD distribution changes in response to heat shock but not neurotrophic stimulation . The Journal of Histochemistry and Cytochemistry . 54 . 10 . 1129–1138 . October 2006 . 16801526 . 3957809 . 10.1369/jhc.6A6979.2006 .
  116. Nawaz MS, Vik ES, Berges N, Fladeby C, Bjørås M, Dalhus B, Alseth I . Regulation of Human Endonuclease V Activity and Relocalization to Cytoplasmic Stress Granules . The Journal of Biological Chemistry . 291 . 41 . 21786–21801 . October 2016 . 27573237 . 5076846 . 10.1074/jbc.M116.730911 . free .
  117. Andersson MK, Ståhlberg A, Arvidsson Y, Olofsson A, Semb H, Stenman G, Nilsson O, Aman P . The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response . BMC Cell Biology . 9 . 37 . July 2008 . 18620564 . 2478660 . 10.1186/1471-2121-9-37 . free .
  118. Neumann M, Bentmann E, Dormann D, Jawaid A, DeJesus-Hernandez M, Ansorge O, Roeber S, Kretzschmar HA, Munoz DG, Kusaka H, Yokota O, Ang LC, Bilbao J, Rademakers R, Haass C, Mackenzie IR . FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations . Brain . 134 . Pt 9 . 2595–2609 . September 2011 . 21856723 . 3170539 . 10.1093/brain/awr201 .
  119. Ozeki K, Sugiyama M, Akter KA, Nishiwaki K, Asano-Inami E, Senga T . FAM98A is localized to stress granules and associates with multiple stress granule-localized proteins . Molecular and Cellular Biochemistry . 451 . 1–2 . 107–115 . January 2019 . 29992460 . 10.1007/s11010-018-3397-6 . 49667042 .
  120. Mazroui R, Huot ME, Tremblay S, Filion C, Labelle Y, Khandjian EW . Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression . Human Molecular Genetics . 11 . 24 . 3007–3017 . November 2002 . 12417522 . 10.1093/hmg/11.24.3007 . free .
  121. Dolzhanskaya N, Merz G, Denman RB . Oxidative stress reveals heterogeneity of FMRP granules in PC12 cell neurites . Brain Research . 1112 . 1 . 56–64 . September 2006 . 16919243 . 10.1016/j.brainres.2006.07.026 . 41514888 .
  122. Blechingberg J, Luo Y, Bolund L, Damgaard CK, Nielsen AL . Gene expression responses to FUS, EWS, and TAF15 reduction and stress granule sequestration analyses identifies FET-protein non-redundant functions . PLOS ONE . 7 . 9 . e46251 . 2012 . 23049996 . 3457980 . 10.1371/journal.pone.0046251 . free . 2012PLoSO...746251B .
  123. Sama RR, Ward CL, Kaushansky LJ, Lemay N, Ishigaki S, Urano F, Bosco DA . FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress . Journal of Cellular Physiology . 228 . 11 . 2222–2231 . November 2013 . 23625794 . 4000275 . 10.1002/jcp.24395 .
  124. Di Salvio M, Piccinni V, Gerbino V, Mantoni F, Camerini S, Lenzi J, Rosa A, Chellini L, Loreni F, Carrì MT, Bozzoni I, Cozzolino M, Cestra G . Pur-alpha functionally interacts with FUS carrying ALS-associated mutations . Cell Death & Disease . 6 . 10 . e1943 . October 2015 . 26492376 . 4632316 . 10.1038/cddis.2015.295 .
  125. Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, Caliendo V, Chiò A, Rosa A, Bozzoni I . ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons . Disease Models & Mechanisms . 8 . 7 . 755–766 . July 2015 . 26035390 . 4486861 . 10.1242/dmm.020099 .
  126. Daigle JG, Krishnamurthy K, Ramesh N, Casci I, Monaghan J, McAvoy K, Godfrey EW, Daniel DC, Johnson EM, Monahan Z, Shewmaker F, Pasinelli P, Pandey UB . Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity . Acta Neuropathologica . 131 . 4 . 605–620 . April 2016 . 26728149 . 4791193 . 10.1007/s00401-015-1530-0 .
  127. Lo Bello M, Di Fini F, Notaro A, Spataro R, Conforti FL, La Bella V . ALS-Related Mutant FUS Protein Is Mislocalized to Cytoplasm and Is Recruited into Stress Granules of Fibroblasts from Asymptomatic FUS P525L Mutation Carriers . Neuro-Degenerative Diseases . 17 . 6 . 292–303 . 2017-10-17 . 29035885 . 10.1159/000480085 . 40561105 .
  128. Marrone L, Poser I, Casci I, Japtok J, Reinhardt P, Janosch A, Andree C, Lee HO, Moebius C, Koerner E, Reinhardt L, Cicardi ME, Hackmann K, Klink B, Poletti A, Alberti S, Bickle M, Hermann A, Pandey UB, Hyman AA, Sterneckert JL . Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy . Stem Cell Reports . 10 . 2 . 375–389 . February 2018 . 29358088 . 5857889 . 10.1016/j.stemcr.2017.12.018 .
  129. Hofmann I, Casella M, Schnölzer M, Schlechter T, Spring H, Franke WW . Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules . Molecular Biology of the Cell . 17 . 3 . 1388–1398 . March 2006 . 16407409 . 1382326 . 10.1091/mbc.E05-08-0708 .
  130. Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J . The RasGAP-associated endoribonuclease G3BP mediates stress granule assembly . The Journal of Cell Biology . 222 . 11 . November 2023 . 37672657 . 10482220 . 10.1083/jcb.200212128072023new .
  131. Hua Y, Zhou J . Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress . Biochemical and Biophysical Research Communications . 314 . 1 . 268–276 . January 2004 . 14715275 . 10.1016/j.bbrc.2003.12.084 .
  132. Kwon S, Zhang Y, Matthias P . The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response . Genes & Development . 21 . 24 . 3381–3394 . December 2007 . 18079183 . 2113037 . 10.1101/gad.461107 .
  133. Tsai WC, Reineke LC, Jain A, Jung SY, Lloyd RE . Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule-nucleating protein G3BP1 . The Journal of Biological Chemistry . 292 . 46 . 18886–18896 . November 2017 . 28972166 . 5704473 . 10.1074/jbc.M117.800706 . free .
  134. Kobayashi T, Winslow S, Sunesson L, Hellman U, Larsson C . PKCα binds G3BP2 and regulates stress granule formation following cellular stress . PLOS ONE . 7 . 4 . e35820 . 2012 . 22536444 . 3335008 . 10.1371/journal.pone.0035820 . free . 2012PLoSO...735820K .
  135. Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M . Both G3BP1 and G3BP2 contribute to stress granule formation . Genes to Cells . 18 . 2 . 135–146 . February 2013 . 23279204 . 10.1111/gtc.12023 . 11859927 . free .
  136. Folkmann AW, Wente SR . Cytoplasmic hGle1A regulates stress granules by modulation of translation . Molecular Biology of the Cell . 26 . 8 . 1476–1490 . April 2015 . 25694449 . 4395128 . 10.1091/mbc.E14-11-1523 .
  137. Zhang K, Daigle JG, Cunningham KM, Coyne AN, Ruan K, Grima JC, Bowen KE, Wadhwa H, Yang P, Rigo F, Taylor JP, Gitler AD, Rothstein JD, Lloyd TE . Stress Granule Assembly Disrupts Nucleocytoplasmic Transport . Cell . 173 . 4 . 958–971.e17 . May 2018 . 29628143 . 6083872 . 10.1016/j.cell.2018.03.025 .
  138. Tsai NP, Ho PC, Wei LN . Regulation of stress granule dynamics by Grb7 and FAK signalling pathway . The EMBO Journal . 27 . 5 . 715–726 . March 2008 . 18273060 . 2265756 . 10.1038/emboj.2008.19 .
  139. Krisenko MO, Higgins RL, Ghosh S, Zhou Q, Trybula JS, Wang WH, Geahlen RL . Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy . The Journal of Biological Chemistry . 290 . 46 . 27803–27815 . November 2015 . 26429917 . 4646026 . 10.1074/jbc.M115.642900 . free .
  140. Grousl T, Ivanov P, Malcova I, Pompach P, Frydlova I, Slaba R, Senohrabkova L, Novakova L, Hasek J . Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae . PLOS ONE . 8 . 2 . e57083 . 2013 . 23451152 . 3581570 . 10.1371/journal.pone.0057083 . free . 2013PLoSO...857083G .
  141. Gonçalves K, Bressan GC, Saito A, Morello LG, Zanchin NI, Kobarg J . Evidence for the association of the human regulatory protein Ki-1/57 with the translational machinery . FEBS Letters . 585 . 16 . 2556–2560 . August 2011 . 21771594 . 10.1016/j.febslet.2011.07.010 . free . 2011FEBSL.585.2556G .
  142. Guil S, Long JC, Cáceres JF . hnRNP A1 relocalization to the stress granules reflects a role in the stress response . Molecular and Cellular Biology . 26 . 15 . 5744–5758 . August 2006 . 16847328 . 1592774 . 10.1128/MCB.00224-06 .
  143. Dewey CM, Cenik B, Sephton CF, Dries DR, Mayer P, Good SK, Johnson BA, Herz J, Yu G . TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor . Molecular and Cellular Biology . 31 . 5 . 1098–1108 . March 2011 . 21173160 . 3067820 . 10.1128/MCB.01279-10 .
  144. Papadopoulou C, Ganou V, Patrinou-Georgoula M, Guialis A . HuR-hnRNP interactions and the effect of cellular stress . Molecular and Cellular Biochemistry . 372 . 1–2 . 137–147 . January 2013 . 22983828 . 10.1007/s11010-012-1454-0 . 16261648 .
  145. Naruse H, Ishiura H, Mitsui J, Date H, Takahashi Y, Matsukawa T, Tanaka M, Ishii A, Tamaoka A, Hokkoku K, Sonoo M, Segawa M, Ugawa Y, Doi K, Yoshimura J, Morishita S, Goto J, Tsuji S . Molecular epidemiological study of familial amyotrophic lateral sclerosis in Japanese population by whole-exome sequencing and identification of novel HNRNPA1 mutation . Neurobiology of Aging . 61 . 255.e9–255.e16 . January 2018 . 29033165 . 10.1016/j.neurobiolaging.2017.08.030 . 38838445 .
  146. McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, Rouleau GA, Vande Velde C . TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1 . Human Molecular Genetics . 20 . 7 . 1400–1410 . April 2011 . 21257637 . 10.1093/hmg/ddr021 . free . 1866/5134 . free .
  147. Fukuda T, Naiki T, Saito M, Irie K . hnRNP K interacts with RNA binding motif protein 42 and functions in the maintenance of cellular ATP level during stress conditions . Genes to Cells . 14 . 2 . 113–128 . February 2009 . 19170760 . 10.1111/j.1365-2443.2008.01256.x . 205293176 . free .
  148. Kedersha NL, Gupta M, Li W, Miller I, Anderson P . RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules . The Journal of Cell Biology . 147 . 7 . 1431–1442 . December 1999 . 10613902 . 2174242 . 10.1083/jcb.147.7.1431 .
  149. Ganassi M, Mateju D, Bigi I, Mediani L, Poser I, Lee HO, Seguin SJ, Morelli FF, Vinet J, Leo G, Pansarasa O, Cereda C, Poletti A, Alberti S, Carra S . A Surveillance Function of the HSPB8-BAG3-HSP70 Chaperone Complex Ensures Stress Granule Integrity and Dynamism . Molecular Cell . 63 . 5 . 796–810 . September 2016 . 27570075 . 10.1016/j.molcel.2016.07.021 . free . 11380/1127998 . free .
  150. Mahboubi H, Moujaber O, Kodiha M, Stochaj U . The Co-Chaperone HspBP1 Is a Novel Component of Stress Granules that Regulates Their Formation . Cells . 9 . 4 . 825 . March 2020 . 32235396 . 7226807 . 10.3390/cells9040825 . free .
  151. Wen X, Huang X, Mok BW, Chen Y, Zheng M, Lau SY, Wang P, Song W, Jin DY, Yuen KY, Chen H . NF90 exerts antiviral activity through regulation of PKR phosphorylation and stress granules in infected cells . Journal of Immunology . 192 . 8 . 3753–3764 . April 2014 . 24623135 . 10.4049/jimmunol.1302813 . free .
  152. Brehm MA, Schenk TM, Zhou X, Fanick W, Lin H, Windhorst S, Nalaskowski MM, Kobras M, Shears SB, Mayr GW . Intracellular localization of human Ins(1,3,4,5,6)P5 2-kinase . The Biochemical Journal . 408 . 3 . 335–345 . December 2007 . 17705785 . 2267366 . 10.1042/BJ20070382 .
  153. Piotrowska J, Hansen SJ, Park N, Jamka K, Sarnow P, Gustin KE . Stable formation of compositionally unique stress granules in virus-infected cells . Journal of Virology . 84 . 7 . 3654–3665 . April 2010 . 20106928 . 2838110 . 10.1128/JVI.01320-09 .
  154. Henao-Mejia J, He JJ . Sam68 relocalization into stress granules in response to oxidative stress through complexing with TIA-1 . Experimental Cell Research . 315 . 19 . 3381–3395 . November 2009 . 19615357 . 2783656 . 10.1016/j.yexcr.2009.07.011 .
  155. Zhang H, Chen N, Li P, Pan Z, Ding Y, Zou D, Li L, Xiao L, Shen B, Liu S, Cao H, Cui Y . The nuclear protein Sam68 is recruited to the cytoplasmic stress granules during enterovirus 71 infection . Microbial Pathogenesis . 96 . 58–66 . July 2016 . 27057671 . 10.1016/j.micpath.2016.04.001 .
  156. Rothé F, Gueydan C, Bellefroid E, Huez G, Kruys V . Identification of FUSE-binding proteins as interacting partners of TIA proteins . Biochemical and Biophysical Research Communications . 343 . 1 . 57–68 . April 2006 . 16527256 . 10.1016/j.bbrc.2006.02.112 .
  157. Mahboubi H, Seganathy E, Kong D, Stochaj U . Identification of Novel Stress Granule Components That Are Involved in Nuclear Transport . PLOS ONE . 8 . 6 . e68356 . 2013 . 23826389 . 3694919 . 10.1371/journal.pone.0068356 . free . 2013PLoSO...868356M .
  158. Fujimura K, Suzuki T, Yasuda Y, Murata M, Katahira J, Yoneda Y . Identification of importin alpha1 as a novel constituent of RNA stress granules . Biochimica et Biophysica Acta (BBA) - Molecular Cell Research . 1803 . 7 . 865–871 . July 2010 . 20362631 . 10.1016/j.bbamcr.2010.03.020 . free .
  159. Yang R, Gaidamakov SA, Xie J, Lee J, Martino L, Kozlov G, Crawford AK, Russo AN, Conte MR, Gehring K, Maraia RJ . La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability . Molecular and Cellular Biology . 31 . 3 . 542–556 . February 2011 . 21098120 . 3028612 . 10.1128/MCB.01162-10 .
  160. Balzer E, Moss EG . Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules . RNA Biology . 4 . 1 . 16–25 . January 2007 . 17617744 . 10.4161/rna.4.1.4364 . free .
  161. Ingelfinger D, Arndt-Jovin DJ, Lührmann R, Achsel T . The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci . RNA . 8 . 12 . 1489–1501 . December 2002 . 12515382 . 1370355 . 10.1017/S1355838202021726 .
  162. Yang WH, Yu JH, Gulick T, Bloch KD, Bloch DB . RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules . RNA . 12 . 4 . 547–554 . April 2006 . 16484376 . 1421083 . 10.1261/rna.2302706 .
  163. Kawahara H, Imai T, Imataka H, Tsujimoto M, Matsumoto K, Okano H . Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP . The Journal of Cell Biology . 181 . 4 . 639–653 . May 2008 . 18490513 . 2386104 . 10.1083/jcb.200708004 .
  164. Yuan L, Xiao Y, Zhou Q, Yuan D, Wu B, Chen G, Zhou J . Proteomic analysis reveals that MAEL, a component of nuage, interacts with stress granule proteins in cancer cells . Oncology Reports . 31 . 1 . 342–350 . January 2014 . 24189637 . 10.3892/or.2013.2836 . free .
  165. Seguin SJ, Morelli FF, Vinet J, Amore D, De Biasi S, Poletti A, Rubinsztein DC, Carra S . Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly . Cell Death and Differentiation . 21 . 12 . 1838–1851 . December 2014 . 25034784 . 4227144 . 10.1038/cdd.2014.103 .
  166. Ryu HH, Jun MH, Min KJ, Jang DJ, Lee YS, Kim HK, Lee JA . Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons . Neurobiology of Aging . 35 . 12 . 2822–2831 . December 2014 . 25216585 . 10.1016/j.neurobiolaging.2014.07.026 . 36917292 .
  167. Wasserman T, Katsenelson K, Daniliuc S, Hasin T, Choder M, Aronheim A . A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation . Molecular Biology of the Cell . 21 . 1 . 117–130 . January 2010 . 19910486 . 2801705 . 10.1091/mbc.E09-06-0512 .
  168. Courchet J, Buchet-Poyau K, Potemski A, Brès A, Jariel-Encontre I, Billaud M . Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules . The Journal of Biological Chemistry . 283 . 46 . 32131–32142 . November 2008 . 18779327 . 10.1074/jbc.M802927200 . free .
  169. Kuniyoshi K, Takeuchi O, Pandey S, Satoh T, Iwasaki H, Akira S, Kawai T . Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity . Proceedings of the National Academy of Sciences of the United States of America . 111 . 15 . 5646–5651 . April 2014 . 24706898 . 3992669 . 10.1073/pnas.1401674111 . free . 2014PNAS..111.5646K .
  170. MacNair L, Xiao S, Miletic D, Ghani M, Julien JP, Keith J, Zinman L, Rogaeva E, Robertson J . MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis . Brain . 139 . Pt 1 . 86–100 . January 2016 . 26525917 . 10.1093/brain/awv308 . free .
  171. Sfakianos AP, Mellor LE, Pang YF, Kritsiligkou P, Needs H, Abou-Hamdan H, Désaubry L, Poulin GB, Ashe MP, Whitmarsh AJ . The mTOR-S6 kinase pathway promotes stress granule assembly . Cell Death and Differentiation . 25 . 10 . 1766–1780 . November 2018 . 29523872 . 6004310 . 10.1038/s41418-018-0076-9 .
  172. Yu C, York B, Wang S, Feng Q, Xu J, O'Malley BW . An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response . Molecular Cell . 25 . 5 . 765–778 . March 2007 . 17349961 . 1864954 . 10.1016/j.molcel.2007.01.025 .
  173. Furukawa MT, Sakamoto H, Inoue K . Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells . Genes to Cells . 20 . 4 . 257–266 . April 2015 . 25651939 . 10.1111/gtc.12224 . 22403884 . free .
  174. Kang JS, Hwang YS, Kim LK, Lee S, Lee WB, Kim-Ha J, Kim YJ . OASL1 Traps Viral RNAs in Stress Granules to Promote Antiviral Responses . Molecules and Cells . 41 . 3 . 214–223 . March 2018 . 29463066 . 5881095 . 10.14348/molcells.2018.2293 .
  175. Wehner KA, Schütz S, Sarnow P . OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress . Molecular and Cellular Biology . 30 . 8 . 2006–2016 . April 2010 . 20154146 . 2849474 . 10.1128/MCB.01350-09 .
  176. Bravard A, Campalans A, Vacher M, Gouget B, Levalois C, Chevillard S, Radicella JP . Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of cadmium . Mutation Research . 685 . 1–2 . 61–69 . March 2010 . 19800894 . 10.1016/j.mrfmmm.2009.09.013 . 2010MRFMM.685...61B .
  177. Das R, Schwintzer L, Vinopal S, Aguado Roca E, Sylvester M, Oprisoreanu AM, Schoch S, Bradke F, Broemer M . New roles for the de-ubiquitylating enzyme OTUD4 in an RNA-protein network and RNA granules . Journal of Cell Science . 132 . 12 . jcs229252 . June 2019 . 31138677 . 6602300 . 10.1242/jcs.229252 .
  178. Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P . Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm . Molecular Cell . 42 . 4 . 489–499 . May 2011 . 21596313 . 3898460 . 10.1016/j.molcel.2011.04.015 .
  179. Repici M, Hassanjani M, Maddison DC, Garção P, Cimini S, Patel B, Szegö ÉM, Straatman KR, Lilley KS, Borsello T, Outeiro TF, Panman L, Giorgini F . The Parkinson's Disease-Linked Protein DJ-1 Associates with Cytoplasmic mRNP Granules During Stress and Neurodegeneration . Molecular Neurobiology . 56 . 1 . 61–77 . January 2019 . 29675578 . 6334738 . 10.1007/s12035-018-1084-y .
  180. Catara G, Grimaldi G, Schembri L, Spano D, Turacchio G, Lo Monte M, Beccari AR, Valente C, Corda D . PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions . Scientific Reports . 7 . 1 . 14035 . October 2017 . 29070863 . 5656619 . 10.1038/s41598-017-14156-8 . 2017NatSR...714035C .
  181. Bai Y, Dong Z, Shang Q, Zhao H, Wang L, Guo C, Gao F, Zhang L, Wang Q . Pdcd4 Is Involved in the Formation of Stress Granule in Response to Oxidized Low-Density Lipoprotein or High-Fat Diet . PLOS ONE . 11 . 7 . e0159568 . 2016 . 27454120 . 4959751 . 10.1371/journal.pone.0159568 . free . 2016PLoSO..1159568B .
  182. Kunde SA, Musante L, Grimme A, Fischer U, Müller E, Wanker EE, Kalscheuer VM . The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules . Human Molecular Genetics . 20 . 24 . 4916–4931 . December 2011 . 21933836 . 10.1093/hmg/ddr430 . free .
  183. Turakhiya A, Meyer SR, Marincola G, Böhm S, Vanselow JT, Schlosser A, Hofmann K, Buchberger A . ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules . English . Molecular Cell . 70 . 5 . 906–919.e7 . June 2018 . 29804830 . 10.1016/j.molcel.2018.04.021 . free .
  184. Yang F, Peng Y, Murray EL, Otsuka Y, Kedersha N, Schoenberg DR . Polysome-bound endonuclease PMR1 is targeted to stress granules via stress-specific binding to TIA-1 . Molecular and Cellular Biology . 26 . 23 . 8803–8813 . December 2006 . 16982678 . 1636822 . 10.1128/MCB.00090-06 .
  185. Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, Fujii M . Stress granules inhibit apoptosis by reducing reactive oxygen species production . Molecular and Cellular Biology . 33 . 4 . 815–829 . February 2013 . 23230274 . 3571346 . 10.1128/MCB.00763-12 .
  186. Park C, Choi S, Kim YE, Lee S, Park SH, Adelstein RS, Kawamoto S, Kim KK . Stress Granules Contain Rbfox2 with Cell Cycle-related mRNAs . Scientific Reports . 7 . 1 . 11211 . September 2017 . 28894257 . 5593835 . 10.1038/s41598-017-11651-w . 2017NatSR...711211P .
  187. Kucherenko MM, Shcherbata HR . Stress-dependent miR-980 regulation of Rbfox1/A2bp1 promotes ribonucleoprotein granule formation and cell survival . Nature Communications . 9 . 1 . 312 . January 2018 . 29358748 . 5778076 . 10.1038/s41467-017-02757-w . 2018NatCo...9..312K .
  188. Lin JC, Hsu M, Tarn WY . Cell stress modulates the function of splicing regulatory protein RBM4 in translation control . Proceedings of the National Academy of Sciences of the United States of America . 104 . 7 . 2235–2240 . February 2007 . 17284590 . 1893002 . 10.1073/pnas.0611015104 . free . 2007PNAS..104.2235L .
  189. Bakkar N, Kousari A, Kovalik T, Li Y, Bowser R . RBM45 Modulates the Antioxidant Response in Amyotrophic Lateral Sclerosis through Interactions with KEAP1 . Molecular and Cellular Biology . 35 . 14 . 2385–2399 . July 2015 . 25939382 . 4475920 . 10.1128/MCB.00087-15 .
  190. Li Y, Collins M, Geiser R, Bakkar N, Riascos D, Bowser R . RBM45 homo-oligomerization mediates association with ALS-linked proteins and stress granules . Scientific Reports . 5 . 14262 . September 2015 . 26391765 . 4585734 . 10.1038/srep14262 . 2015NatSR...514262L .
  191. Farazi TA, Leonhardt CS, Mukherjee N, Mihailovic A, Li S, Max KE, Meyer C, Yamaji M, Cekan P, Jacobs NC, Gerstberger S, Bognanni C, Larsson E, Ohler U, Tuschl T . Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets . RNA . 20 . 7 . 1090–1102 . July 2014 . 24860013 . 4114688 . 10.1261/rna.045005.114 .
  192. Athanasopoulos V, Barker A, Yu D, Tan AH, Srivastava M, Contreras N, Wang J, Lam KP, Brown SH, Goodnow CC, Dixon NE, Leedman PJ, Saint R, Vinuesa CG . The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs . The FEBS Journal . 277 . 9 . 2109–2127 . May 2010 . 20412057 . 10.1111/j.1742-4658.2010.07628.x . 13387108 . free .
  193. Eisinger-Mathason TS, Andrade J, Groehler AL, Clark DE, Muratore-Schroeder TL, Pasic L, Smith JA, Shabanowitz J, Hunt DF, Macara IG, Lannigan DA . Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival . Molecular Cell . 31 . 5 . 722–736 . September 2008 . 18775331 . 2654589 . 10.1016/j.molcel.2008.06.025 .
  194. Baez MV, Boccaccio GL . Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules . The Journal of Biological Chemistry . 280 . 52 . 43131–43140 . December 2005 . 16221671 . 10.1074/jbc.M508374200 . free . 20.500.12110/paper_00219258_v280_n52_p43131_Baez . free .
  195. Lee YJ, Wei HM, Chen LY, Li C . Localization of SERBP1 in stress granules and nucleoli . The FEBS Journal . 281 . 1 . 352–364 . January 2014 . 24205981 . 10.1111/febs.12606 . 20464730 . free .
  196. Omer A, Patel D, Lian XJ, Sadek J, Di Marco S, Pause A, Gorospe M, Gallouzi IE . Stress granules counteract senescence by sequestration of PAI-1 . EMBO Reports . 19 . 5 . e44722 . May 2018 . 29592859 . 5934773 . 10.15252/embr.201744722 .
  197. Jedrusik-Bode M, Studencka M, Smolka C, Baumann T, Schmidt H, Kampf J, Paap F, Martin S, Tazi J, Müller KM, Krüger M, Braun T, Bober E . The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals . Journal of Cell Science . 126 . Pt 22 . 5166–5177 . November 2013 . 24013546 . 10.1242/jcs.130708 . free . 11858/00-001M-0000-0014-C701-9 . free .
  198. Brown JA, Roberts TL, Richards R, Woods R, Birrell G, Lim YC, Ohno S, Yamashita A, Abraham RT, Gueven N, Lavin MF . A novel role for hSMG-1 in stress granule formation . Molecular and Cellular Biology . 31 . 22 . 4417–4429 . November 2011 . 21911475 . 3209244 . 10.1128/MCB.05987-11 .
  199. Hua Y, Zhou J . Survival motor neuron protein facilitates assembly of stress granules . FEBS Letters . 572 . 1–3 . 69–74 . August 2004 . 15304326 . 10.1016/j.febslet.2004.07.010 . 27599172 . free . 2004FEBSL.572...69H .
  200. Zou T, Yang X, Pan D, Huang J, Sahin M, Zhou J . SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress . Cellular and Molecular Neurobiology . 31 . 4 . 541–550 . May 2011 . 21234798 . 10.1007/s10571-011-9647-8 . 8763933 .
  201. Gao X, Fu X, Song J, Zhang Y, Cui X, Su C, Ge L, Shao J, Xin L, Saarikettu J, Mei M, Yang X, Wei M, Silvennoinen O, Yao Z, He J, Yang J . Poly(A)(+) mRNA-binding protein Tudor-SN regulates stress granules aggregation dynamics . The FEBS Journal . 282 . 5 . 874–890 . March 2015 . 25559396 . 10.1111/febs.13186 . 27524910 . free .
  202. Chang YW, Huang YS . Arsenite-activated JNK signaling enhances CPEB4-Vinexin interaction to facilitate stress granule assembly and cell survival . PLOS ONE . 9 . 9 . e107961 . 2014 . 25237887 . 4169592 . 10.1371/journal.pone.0107961 . free . 2014PLoSO...9j7961C .
  203. Zhu CH, Kim J, Shay JW, Wright WE . SGNP: an essential Stress Granule/Nucleolar Protein potentially involved in 5.8s rRNA processing/transport . PLOS ONE . 3 . 11 . e3716 . 2008 . 19005571 . 2579992 . 10.1371/journal.pone.0003716 . free . 2008PLoSO...3.3716Z .
  204. Berger A, Ivanova E, Gareau C, Scherrer A, Mazroui R, Strub K . Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA . Nucleic Acids Research . 42 . 17 . 11203–11217 . 2014 . 25200073 . 4176187 . 10.1093/nar/gku822 .
  205. Delestienne N, Wauquier C, Soin R, Dierick JF, Gueydan C, Kruys V . The splicing factor ASF/SF2 is associated with TIA-1-related/TIA-1-containing ribonucleoproteic complexes and contributes to post-transcriptional repression of gene expression . The FEBS Journal . 277 . 11 . 2496–2514 . June 2010 . 20477871 . 10.1111/j.1742-4658.2010.07664.x . 24332251 . free .
  206. Fitzgerald KD, Semler BL . Poliovirus infection induces the co-localization of cellular protein SRp20 with TIA-1, a cytoplasmic stress granule protein . Virus Research . 176 . 1–2 . 223–231 . September 2013 . 23830997 . 3742715 . 10.1016/j.virusres.2013.06.012 .
  207. Kano S, Nishida K, Kurebe H, Nishiyama C, Kita K, Akaike Y, Kajita K, Kurokawa K, Masuda K, Kuwano Y, Tanahashi T, Rokutan K . Oxidative stress-inducible truncated serine/arginine-rich splicing factor 3 regulates interleukin-8 production in human colon cancer cells . American Journal of Physiology. Cell Physiology . 306 . 3 . C250–C262 . February 2014 . 24284797 . 10.1152/ajpcell.00091.2013 . 17352565 .
  208. Jayabalan AK, Sanchez A, Park RY, Yoon SP, Kang GY, Baek JH, Anderson P, Kee Y, Ohn T . NEDDylation promotes stress granule assembly . Nature Communications . 7 . 12125 . July 2016 . 27381497 . 4935812 . 10.1038/ncomms12125 . 2016NatCo...712125J .
  209. Kukharsky MS, Quintiero A, Matsumoto T, Matsukawa K, An H, Hashimoto T, Iwatsubo T, Buchman VL, Shelkovnikova TA . Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis . Molecular Neurodegeneration . 10 . 20 . April 2015 . 25888396 . 4428507 . 10.1186/s13024-015-0014-y . free .
  210. Thomas MG, Martinez Tosar LJ, Desbats MA, Leishman CC, Boccaccio GL . Mammalian Staufen 1 is recruited to stress granules and impairs their assembly . Journal of Cell Science . 122 . Pt 4 . 563–573 . February 2009 . 19193871 . 2714435 . 10.1242/jcs.038208 .
  211. Quaresma AJ, Bressan GC, Gava LM, Lanza DC, Ramos CH, Kobarg J . Human hnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, arsenite and heat-shock treatments . Experimental Cell Research . 315 . 6 . 968–980 . April 2009 . 19331829 . 10.1016/j.yexcr.2009.01.012 .
  212. Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderweyde T, Vanderwyde T, Citro A, Mehta T, Zaarur N, McKee A, Bowser R, Sherman M, Petrucelli L, Wolozin B . Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue . PLOS ONE . 5 . 10 . e13250 . October 2010 . 20948999 . 2952586 . 10.1371/journal.pone.0013250 . free . 2010PLoSO...513250L .
  213. Freibaum BD, Chitta RK, High AA, Taylor JP . Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery . Journal of Proteome Research . 9 . 2 . 1104–1120 . February 2010 . 20020773 . 2897173 . 10.1021/pr901076y .
  214. Khalfallah Y, Kuta R, Grasmuck C, Prat A, Durham HD, Vande Velde C . TDP-43 regulation of stress granule dynamics in neurodegenerative disease-relevant cell types . Scientific Reports . 8 . 1 . 7551 . May 2018 . 29765078 . 5953947 . 10.1038/s41598-018-25767-0 . 2018NatSR...8.7551K .
  215. Linder B, Plöttner O, Kroiss M, Hartmann E, Laggerbauer B, Meister G, Keidel E, Fischer U . Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP . Human Molecular Genetics . 17 . 20 . 3236–3246 . October 2008 . 18664458 . 10.1093/hmg/ddn219 . free .
  216. Stoll G, Pietiläinen OP, Linder B, Suvisaari J, Brosi C, Hennah W, Leppä V, Torniainen M, Ripatti S, Ala-Mello S, Plöttner O, Rehnström K, Tuulio-Henriksson A, Varilo T, Tallila J, Kristiansson K, Isohanni M, Kaprio J, Eriksson JG, Raitakari OT, Lehtimäki T, Jarvelin MR, Salomaa V, Hurles M, Stefansson H, Peltonen L, Sullivan PF, Paunio T, Lönnqvist J, Daly MJ, Fischer U, Freimer NB, Palotie A . Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders . Nature Neuroscience . 16 . 9 . 1228–1237 . September 2013 . 23912948 . 3986889 . 10.1038/nn.3484 .
  217. Narayanan N, Wang Z, Li L, Yang Y . Arginine methylation of USP9X promotes its interaction with TDRD3 and its anti-apoptotic activities in breast cancer cells . Cell Discovery . 3 . 16048 . 2017 . 28101374 . 5206711 . 10.1038/celldisc.2016.48 .
  218. Iannilli F, Zalfa F, Gartner A, Bagni C, Dotti CG . Cytoplasmic TERT Associates to RNA Granules in Fully Mature Neurons: Role in the Translational Control of the Cell Cycle Inhibitor p15INK4B . PLOS ONE . 8 . 6 . e66602 . 2013 . 23825548 . 3688952 . 10.1371/journal.pone.0066602 . free . 2013PLoSO...866602I .
  219. Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, Annu K, Baker M, Perkerson RB, Kurti A, Matchett BJ, Mittag T, Temirov J, Hsiung GR, Krieger C, Murray ME, Kato M, Fryer JD, Petrucelli L, Zinman L, Weintraub S, Mesulam M, Keith J, Zivkovic SA, Hirsch-Reinshagen V, Roos RP, Züchner S, Graff-Radford NR, Petersen RC, Caselli RJ, Wszolek ZK, Finger E, Lippa C, Lacomis D, Stewart H, Dickson DW, Kim HJ, Rogaeva E, Bigio E, Boylan KB, Taylor JP, Rademakers R . TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics . Neuron . 95 . 4 . 808–816.e9 . August 2017 . 28817800 . 5576574 . 10.1016/j.neuron.2017.07.025 . Submitted manuscript .
  220. Lee Y, Jonson PH, Sarparanta J, Palmio J, Sarkar M, Vihola A, Evilä A, Suominen T, Penttilä S, Savarese M, Johari M, Minot MC, Hilton-Jones D, Maddison P, Chinnery P, Reimann J, Kornblum C, Kraya T, Zierz S, Sue C, Goebel H, Azfer A, Ralston SH, Hackman P, Bucelli RC, Taylor JP, Weihl CC, Udd B . TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations . The Journal of Clinical Investigation . 128 . 3 . 1164–1177 . March 2018 . 29457785 . 5824866 . 10.1172/JCI97103 .
  221. Chang WL, Tarn WY . A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay . Nucleic Acids Research . 37 . 19 . 6600–6612 . October 2009 . 19729507 . 2770677 . 10.1093/nar/gkp717 .
  222. Guo L, Kim HJ, Wang H, Monaghan J, Freyermuth F, Sung JC, O'Donovan K, Fare CM, Diaz Z, Singh N, Zhang ZC, Coughlin M, Sweeny EA, DeSantis ME, Jackrel ME, Rodell CB, Burdick JA, King OD, Gitler AD, Lagier-Tourenne C, Pandey UB, Chook YM, Taylor JP, Shorter J . Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains . Cell . 173 . 3 . 677–692.e20 . April 2018 . 29677512 . 5911940 . 10.1016/j.cell.2018.03.002 .
  223. Huang L, Wang Z, Narayanan N, Yang Y . Arginine methylation of the C-terminus RGG motif promotes TOP3B topoisomerase activity and stress granule localization . Nucleic Acids Research . 46 . 6 . 3061–3074 . April 2018 . 29471495 . 5888246 . 10.1093/nar/gky103 .
  224. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F . RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage . Genes & Development . 24 . 15 . 1590–1595 . August 2010 . 20679393 . 2912555 . 10.1101/gad.586710 .
  225. Huang C, Chen Y, Dai H, Zhang H, Xie M, Zhang H, Chen F, Kang X, Bai X, Chen Z . UBAP2L arginine methylation by PRMT1 modulates stress granule assembly . Cell Death and Differentiation . 27 . 1 . 227–241 . January 2020 . 31114027 . 7205891 . 10.1038/s41418-019-0350-5 . free .
  226. Cirillo L, Cieren A, Barbieri S, Khong A, Schwager F, Parker R, Gotta M . UBAP2L Forms Distinct Cores that Act in Nucleating Stress Granules Upstream of G3BP1 . Current Biology . 30 . 4 . 698–707.e6 . February 2020 . 31956030 . 10.1016/j.cub.2019.12.020 . 210597276 . free . 2020CBio...30E.698C .
  227. Dao TP, Kolaitis RM, Kim HJ, O'Donovan K, Martyniak B, Colicino E, Hehnly H, Taylor JP, Castañeda CA . Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions . Molecular Cell . 69 . 6 . 965–978.e6 . March 2018 . 29526694 . 6181577 . 10.1016/j.molcel.2018.02.004 .
  228. Wang B, Maxwell BA, Joo JH, Gwon Y, Messing J, Mishra A, Shaw TI, Ward AL, Quan H, Sakurada SM, Pruett-Miller SM, Bertorini T, Vogel P, Kim HJ, Peng J, Taylor JP, Kundu M . ULK1 and ULK2 Regulate Stress Granule Disassembly Through Phosphorylation and Activation of VCP/p97 . English . Molecular Cell . 74 . 4 . 742–757.e8 . May 2019 . 30979586 . 6859904 . 10.1016/j.molcel.2019.03.027 .
  229. Xie X, Matsumoto S, Endo A, Fukushima T, Kawahara H, Saeki Y, Komada M . Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities . Journal of Cell Science . 131 . 8 . jcs210856 . April 2018 . 29567855 . 10.1242/jcs.210856 . free .
  230. Buchan JR, Kolaitis RM, Taylor JP, Parker R . Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function . Cell . 153 . 7 . 1461–1474 . June 2013 . 23791177 . 3760148 . 10.1016/j.cell.2013.05.037 .
  231. Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TG, Zhang F, Ng T, Delattre O, Evdokimova V, Wang Y, Gleave M, Sorensen PH . YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1 . The Journal of Cell Biology . 208 . 7 . 913–929 . March 2015 . 25800057 . 4384734 . 10.1083/jcb.201411047 .
  232. Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, Pickering BF, Patil DP, Kwak H, Lee JH, Jaffrey SR . m6A enhances the phase separation potential of mRNA . Nature . 571 . 7765 . 424–428 . July 2019 . 31292544 . 6662915 . 10.1038/s41586-019-1374-1 . Pierre . Sara . Sim . Anthony .
  233. Fu Y, Zhuang X . m6A-binding YTHDF proteins promote stress granule formation . Nature Chemical Biology . 16 . 9 . 955–963 . September 2020 . 32451507 . 7442727 . 10.1038/s41589-020-0524-y .
  234. Anders M, Chelysheva I, Goebel I, Trenkner T, Zhou J, Mao Y, Verzini S, Qian SB, Ignatova Z . Dynamic m6A methylation facilitates mRNA triaging to stress granules . Life Science Alliance . 1 . 4 . e201800113 . August 2018 . 30456371 . 6238392 . 10.26508/lsa.201800113 .
  235. Stöhr N, Lederer M, Reinke C, Meyer S, Hatzfeld M, Singer RH, Hüttelmaier S . ZBP1 regulates mRNA stability during cellular stress . The Journal of Cell Biology . 175 . 4 . 527–534 . November 2006 . 17101699 . 2064588 . 10.1083/jcb.200608071 .
  236. Deigendesch N, Koch-Nolte F, Rothenburg S . ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains . Nucleic Acids Research . 34 . 18 . 5007–5020 . 2006 . 16990255 . 1636418 . 10.1093/nar/gkl575 .
  237. Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK, Anderson P . MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay . The EMBO Journal . 23 . 6 . 1313–1324 . March 2004 . 15014438 . 381421 . 10.1038/sj.emboj.7600163 .
  238. Holmes B, Artinian N, Anderson L, Martin J, Masri J, Cloninger C, Bernath A, Bashir T, Benavides-Serrato A, Gera J . Protor-2 interacts with tristetraprolin to regulate mRNA stability during stress . Cellular Signalling . 24 . 1 . 309–315 . January 2012 . 21964062 . 3205320 . 10.1016/j.cellsig.2011.09.015 .
  239. Murata T, Morita N, Hikita K, Kiuchi K, Kiuchi K, Kaneda N . Recruitment of mRNA-destabilizing protein TIS11 to stress granules is mediated by its zinc finger domain . Experimental Cell Research . 303 . 2 . 287–299 . February 2005 . 15652343 . 10.1016/j.yexcr.2004.09.031 .