X
y1,...,yn
X=\partial/\partialy1
X
The Frobenius theorem in differential geometry can be considered as a higher-dimensional generalization of this theorem.
It is clear that we only have to find such coordinates at 0 in
Rn
X=\sumjfj(x){\partial\over\partialxj}
x
0
f=(f1,...,fn)
f(0)=(1,0,...,0).
\Phi(t,p)
x |
=f(x),x(0)=p
\psi(x1,...,xn)=\Phi(x1,(0,x2,...,xn)).
\Phi
\psi
{\partial\over\partialx1}\psi(x)=f(\psi(x))
\psi(0,x2,...,xn)=\Phi(0,(0,x2,...,xn))=(0,x2,...,xn)
d\psi
0
y=\psi-1(x)
0
x=\psi(y)
{\partialxj\over\partialy1}=fj(\psi(y))=fj(x)
{\partial\over\partialy1}=X