In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as
Rn
Cn
R2
R3
Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction. There are several common notations for standard-basis vectors, including,,, and . These vectors are sometimes written with a hat to emphasize their status as unit vectors (standard unit vectors).
vx
vy
vz
In the -dimensional Euclidean space
Rn
Standard bases can be defined for other vector spaces, whose definition involves coefficients, such as polynomials and matrices. In both cases, the standard basis consists of the elements of the space such that all coefficients but one are 0 and the non-zero one is 1. For polynomials, the standard basis thus consists of the monomials and is commonly called monomial basis. For matrices
l{M}m
By definition, the standard basis is a sequence of orthogonal unit vectors. In other words, it is an ordered and orthonormal basis.
However, an ordered orthonormal basis is not necessarily a standard basis. For instance the two vectors representing a 30° rotation of the 2D standard basis described above, i.e.,are also orthogonal unit vectors, but they are not aligned with the axes of the Cartesian coordinate system, so the basis with these vectors does not meet the definition of standard basis.
There is a standard basis also for the ring of polynomials in n indeterminates over a field, namely the monomials.
All of the preceding are special cases of the indexed family where
I
\deltaij
The existence of other 'standard' bases has become a topic of interest in algebraic geometry, beginning with work of Hodge from 1943 on Grassmannians. It is now a part of representation theory called standard monomial theory. The idea of standard basis in the universal enveloping algebra of a Lie algebra is established by the Poincaré–Birkhoff–Witt theorem.
Gröbner bases are also sometimes called standard bases.
In physics, the standard basis vectors for a given Euclidean space are sometimes referred to as the versors of the axes of the corresponding Cartesian coordinate system.