In differential geometry, a spray is a vector field H on the tangent bundle TM that encodes a quasilinear second order system of ordinary differential equations on the base manifold M. Usually a spray is required to be homogeneous in the sense that its integral curves t→ΦHt(ξ)∈TM obey the rule ΦHt(λξ)=ΦHλt(ξ) in positive re-parameterizations. If this requirement is dropped, H is called a semi-spray.
Sprays arise naturally in Riemannian and Finsler geometry as the geodesic sprays whose integral curves are precisely the tangent curves of locally length minimizing curves.Semisprays arise naturally as the extremal curves of action integrals in Lagrangian mechanics. Generalizing all these examples, any (possibly nonlinear) connection on M induces a semispray H, and conversely, any semispray H induces a torsion-free nonlinear connection on M. If the original connection is torsion-free it coincides with the connection induced by H, and homogeneous torsion-free connections are in one-to-one correspondence with full sprays.[1]
Let M be a differentiable manifold and (TM,πTM,M) its tangent bundle. Then a vector field H on TM (that is, a section of the double tangent bundle TTM) is a semi-spray on M, if any of the three following equivalent conditions holds:
A semispray H on M is a (full) spray if any of the following equivalent conditions hold:
Let
(xi,\xii)
TM
(xi
M
H
M
H\xi=
| ||||
\xi |
|(x,\xi)-
| ||||
2G |
|(x,\xi).
Gi(x,λ\xi)=λ2Gi(x,\xi), λ>0.
A physical system is modeled in Lagrangian mechanics by a Lagrangian function L:TM→R on the tangent bundle of some configuration space M. The dynamical law is obtained from the Hamiltonian principle, which states that the time evolution γ:[''a'',''b'']→M of the state of the system is stationary for the action integral
lS(\gamma):=
b | ||
\int | L(\gamma(t), | |
a |
\gamma(t))dt |
d | |
ds |
|s=0lS(\gammas) =
b | |
| | |
a |
\partialL | |
\partial\xii |
Xi-
b | ||
\int | ( | |
a |
\partial2L | |
\partial\xij\partial\xii |
\ddot\gammaj +
\partial2L | |
\partialxj\partial\xii |
\gamma |
j-
\partialL | |
\partialxi |
)Xidt,
\alpha\xi=\alphai(x,\xi)
i| | |
dx | |
x\in |
*M | |
T | |
x |
\alphai(x,\xi)=\tfrac{\partialL}{\partial\xii}(x,\xi)
\xi\inTxM
\alpha\in\Omega1(TM)
\alpha\xi=\alphai(x,\xi)
i| | |
dx | |
(x,\xi) |
\in
* | |
T | |
\xi |
TM
g\xi=gij(x,\xi)(dxi ⊗
j)| | |
dx | |
x |
gij(x,\xi)=\tfrac{\partial2L}{\partial\xii\partial\xij}(x,\xi)
\xi\inTxM
\displaystyleg\xi
\xi\inTxM
\displaystylegij(x,\xi)
\displaystylegij(x,\xi)
\displaystyleE(\xi)=\alpha\xi(\xi)-L(\xi)
If the Legendre condition is satisfied, then dα∈Ω2(TM) is a symplectic form, and there exists a unique Hamiltonian vector field H on TM corresponding to the Hamiltonian function E such that
\displaystyledE=-\iotaHd\alpha
\iotaHd\alpha=Yi
\partial2L | |
\partial\xii\partialxj |
dxj-Xi
\partial2L | |
\partial\xii\partialxj |
d\xij
dE=(
\partial2L | |
\partialxi\partial\xij |
\xij-
\partialL | |
\partialxi |
)dxi+ \xij
\partial2L | |
\partial\xii\partialxj |
d\xii
Gk(x,\xi)=
gki | ( | |
2 |
\partial2L | |
\partial\xii\partialxj |
\xij-
\partialL | |
\partialxi |
).
d | |
ds |
|s=0lS(\gammas) =
b | |
| | |
a |
\alphaiXi-
b | |
\int | |
a |
gik(\ddot\gammak+2Gk)Xidt,
The locally length minimizing curves of Riemannian and Finsler manifolds are called geodesics. Using the framework of Lagrangian mechanics one can describe these curves with spray structures. Define a Lagrangian function on TM by
L(x,\xi)=\tfrac{1}{2}F2(x,\xi),
F(x,λ\xi)=λF(x,\xi), λ>0
\alphai=gij\xii,
2=g | |
F | |
ij |
\xii\xij, E=
i | |
\alpha | |
i\xi |
-L=\tfrac{1}{2}F2.
gij(λ\xi)=gij(\xi), \alphai(x,λ\xi)=λ\alphai(x,\xi), Gi(x,λ\xi)=λ2Gi(x,\xi),
F(\gamma(t),\gamma(t))=λ |
\gamma:[a,b]\toM
lS(\gamma)=
(b-a)λ2 | |
2 |
=
\ell(\gamma)2 | |
2(b-a) |
.
\gamma:[a,b]\toM
A semi-spray
H
M
T(TM\setminus0)=H(TM\setminus0) ⊕ V(TM\setminus0)
h:T(TM\setminus0)\toT(TM\setminus0) ; h=\tfrac{1}{2}(I-lLHJ),
v:T(TM\setminus0)\toT(TM\setminus0) ; v=\tfrac{1}{2}(I+lLHJ).
\displaystyleT(X,Y)=J[hX,hY]-v[JX,hY]-v[hX,JY].
Introducing the canonical vector field V on TM\0 and the adjoint structure Θ of the induced connection the horizontal part of the semi-spray can be written as hH=ΘV. The vertical part ε=vH of the semispray is known as the first spray invariant, and the semispray H itself decomposes into
\displaystyleH=\ThetaV+\epsilon.
\tau=lLVv=\tfrac{1}{2}lL[V,H]-HJ
lLV\epsilon+\epsilon=\tau\ThetaV.
\epsilon|\xi=
0 | |
\int\limits | |
-infty |
e-s
-s | |
(\Phi | |
V |
)*(\tau\Theta
V)| | |||||||
|
ds.