Sphericity is a measure of how closely the shape of an object resembles that of a perfect sphere. For example, the sphericity of the balls inside a ball bearing determines the quality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of a compactness measure of a shape.
Sphericity applies in three dimensions; its analogue in two dimensions, such as the cross sectional circles along a cylindrical object such as a shaft, is called roundness.
Defined by Wadell in 1935,[1] the sphericity,
\Psi
\Psi=
| |||||||||||||||||||
Ap |
where
Vp
Ap
See also: Flattening.
The sphericity,
\Psi
\Psi=
| = | |||||||||||||||||||
Ap |
2\sqrt[3]{ab2 | |
where a and b are the semi-major and semi-minor axes respectively.
Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the particle divided by the actual surface area of the particle.
First we need to write surface area of the sphere,
As
Vp
3 | |
A | |
s |
=\left(4\pir2\right)3=43\pi3r6=4\pi\left(42\pi2r6\right)=4\pi ⋅ 32\left(
42\pi2 | |
32 |
r6\right)=36\pi\left(
4\pi | |
3 |
r3\right)2=36\pi
2 | |
V | |
p |
therefore
As=\left(36\pi
2\right) | |
V | |
p |
| ||||
=
| ||||
36 |
| ||||
\pi |
| ||||
V | ||||
p |
=
| ||||
6 |
| ||||
\pi |
| ||||
V | ||||
p |
=
| ||||
\pi |
\left(6Vp
| ||||
\right) |
hence we define
\Psi
\Psi=
As | |
Ap |
=
| |||||||||||||||||
Ap |
Name | Picture | Volume | Surface area | Sphericity | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sphere |
\pir3 | 4\pir2 | data-sort-value=1 | 1 | |||||||||||||||||||||
Disdyakis triacontahedron |
\left(5+4\sqrt{5}\right)s3 |
\sqrt{179-24\sqrt{5}}s2 | data-sort-value=0.9857 |
2
| |||||||||||||||||||||
Rhombic triacontahedron | 4\sqrt{5+2\sqrt{5}}s3 | 12\sqrt{5}s2 | data-sort-value=0.9609 |
| |||||||||||||||||||||
Icosahedron |
\left(3+\sqrt{5}\right)s3 | 5\sqrt{3}s2 | data-sort-value=0.939 |
2\pi}{60\sqrt{3}}\right)
≈ 0.939 | |||||||||||||||||||||
Dodecahedron |
\left(15+7\sqrt{5}\right)s3 | 3\sqrt{25+10\sqrt{5}}s2 | data-sort-value=0.910 |
2
| |||||||||||||||||||||
Ideal torus (R=r) | 2\pi2Rr2=2\pi2r3 | 4\pi2Rr=4\pi2r2 | data-sort-value=0.894 |
≈ 0.894 | |||||||||||||||||||||
Ideal cylinder (h=2r) | \pir2h=2\pir3 | 2\pir(r+h)=6\pir2 | data-sort-value=0.874 |
≈ 0.874 | |||||||||||||||||||||
Octahedron |
\sqrt{2}s3 | 2\sqrt{3}s2 | data-sort-value=0.846 |
| |||||||||||||||||||||
Hemisphere (half sphere) |
\pir3 | 3\pir2 | data-sort-value=0.840 |
≈ 0.840 | |||||||||||||||||||||
Cube (hexahedron) | s3 | 6s2 | data-sort-value=0.806 |
≈ 0.806 | |||||||||||||||||||||
Ideal cone (h=2\sqrt{2}r) |
| \pir(r+\sqrt{r2+h2})=4\pir2 | data-sort-value=0.794 |
≈ 0.794 | |||||||||||||||||||||
Tetrahedron |
| \sqrt{3}s2 | data-sort-value=0.671 |
| |||||||||||||||||||||