In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues.[1] More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by .
Let be the eigenvalues of a matrix . The spectral radius of is defined as
\rho(A)=max\left\{|λ1|,...c,|λn|\right\}.
The spectral radius can be thought of as an infimum of all norms of a matrix. Indeed, on the one hand,
\rho(A)\leqslant\|A\|
\| ⋅ \|
\rho(A)=\limk\toinfty\|Ak\|1/k
However, the spectral radius does not necessarily satisfy
\|Av\|\leqslant\rho(A)\|v\|
v\inCn
r>1
Cr=\begin{pmatrix}0&r-1\ r&0\end{pmatrix}
Cr
λ2-1
\{-1,1\}
\rho(Cr)=1
Cre1=re2
\|Cre1\|=r>1=\rho(Cr)\|e1\|.
k\| | |
\|C | |
r |
1/k\to1
k\toinfty
k | |
C | |
r |
=I
k
k | |
C | |
r |
=Cr
k
A special case in which
\|Av\|\leqslant\rho(A)\|v\|
v\inCn
A
\| ⋅ \|
\|Av\|=\|U*DUv\|=\|DUv\|\leqslant\rho(A)\|Uv\|=\rho(A)\|v\|.
In the context of a bounded linear operator on a Banach space, the eigenvalues need to be replaced with the elements of the spectrum of the operator, i.e. the values
λ
A-λI
\sigma(A)=\left\{λ\in\Complex:A-λI isnotbijective\right\}
\rho(A)=\supλ|λ|
\| ⋅ \|
\rho(A)=\limk\|Ak\|
| ||||
=inf | |
k\inN* |
\|Ak\|
| ||||
.
A bounded operator (on a complex Hilbert space) is called a spectraloid operator if its spectral radius coincides with its numerical radius. An example of such an operator is a normal operator.
The spectral radius of a finite graph is defined to be the spectral radius of its adjacency matrix.
This definition extends to the case of infinite graphs with bounded degrees of vertices (i.e. there exists some real number such that the degree of every vertex of the graph is smaller than). In this case, for the graph define:
\ell2(G)=\left\{f:V(G)\toR : \sum\nolimitsv\left\|f(v)2\right\|<infty\right\}.
Let be the adjacency operator of :
\begin{cases}\gamma:\ell2(G)\to\ell2(G)\ (\gammaf)(v)=\sum(u,v)f(u)\end{cases}
The spectral radius of is defined to be the spectral radius of the bounded linear operator .
The following proposition gives simple yet useful upper bounds on the spectral radius of a matrix.
Proposition. Let with spectral radius and a consistent matrix norm . Then for each integer
k\geqslant1
\rho(A)\leq\|Ak\|
| ||||
.
Proof
Let be an eigenvector-eigenvalue pair for a matrix A. By the sub-multiplicativity of the matrix norm, we get:
|λ|k\|v\|=\|λkv\|=\|Akv\|\leq\|Ak\| ⋅ \|v\|.
Since, we have
|λ|k\leq\|Ak\|
and therefore
\rho(A)\leq\|Ak\|
| ||||
.
concluding the proof.
There are many upper bounds for the spectral radius of a graph in terms of its number n of vertices and its number m of edges. For instance, if
(k-2)(k-3) | |
2 |
\leqm-n\leq
k(k-3) | |
2 |
where
3\lek\len
\rho(G)\leq\sqrt{2m-n-k+
5 | |
2 |
+\sqrt{2m-2n+
9 | |
4 |
The spectral radius is closely related to the behavior of the convergence of the power sequence of a matrix; namely as shown by the following theorem.
Theorem. Let with spectral radius . Then if and only if
\limkAk=0.
\limk\|Ak\|=infty
Proof
Assume that
Ak
k
\begin{align} 0&=\left(\limkAk\right)v\\ &=\limk\left(Akv\right)\\ &=\limkλkv\\ &=v\limkλk \end{align}
Since by hypothesis, we must have
\limkλk=0,
which implies
|λ|<1
λ
Now, assume the radius of is less than . From the Jordan normal form theorem, we know that for all, there exist with non-singular and block diagonal such that:
A=VJV-1
with
J=\begin{bmatrix} J | |
m1 |
(λ1)&0&0& … &0\\ 0&
J | |
m2 |
(λ2)&0& … &0\\ \vdots& … &\ddots& … &\vdots\\ 0& … &0&
J | |
ms-1 |
(λs-1)&0\\ 0& … & … &0&
J | |
ms |
(λs) \end{bmatrix}
where
J | |
mi |
(λi)=\begin{bmatrix} λi&1&0& … &0\\ 0&λi&1& … &0\\ \vdots&\vdots&\ddots&\ddots&\vdots\\ 0&0& … &λi&1\\ 0&0& … &0&λi \end{bmatrix}\in
mi x mi | |
C |
,1\leqi\leqs.
It is easy to see that
Ak=VJkV-1
and, since is block-diagonal,
k(λ | |
J | |
1) |
&0&0& … &0\\ 0&
k(λ | |
J | |
2) |
&0& … &0\\ \vdots& … &\ddots& … &\vdots\\ 0& … &0&
k(λ | |
J | |
s-1 |
)&0\\ 0& … & … &0&
k(λ | |
J | |
s) \end{bmatrix} |
Now, a standard result on the -power of an
mi x mi
k\geqmi-1
k(λ | |
J | |
i)=\begin{bmatrix} λ |
k | |
i |
&{k\choose
k-1 | |
1}λ | |
i |
&{k\choose
k-2 | |
2}λ | |
i |
& … &{k\choosemi-1}λ
k-mi+1 | |
i |
\\ 0&
k | |
λ | |
i |
&{k\choose
k-1 | |
1}λ | |
i |
& … &{k\choosemi-2}λ
k-mi+2 | |
i |
\\ \vdots&\vdots&\ddots&\ddots&\vdots\\ 0&0& … &
k | |
λ | |
i |
&{k\choose
k-1 | |
1}λ | |
i |
\\ 0&0& … &0&
k \end{bmatrix} | |
λ | |
i |
Thus, if
\rho(A)<1
|λi|<1
\limk
k=0 | |
J | |
mi |
which implies
\limkJk=0.
Therefore,
\limk
k=\lim | |
A | |
k\toinfty |
VJkV-1=V\left(\limkJk\right)V-1=0
On the other side, if
\rho(A)>1
Gelfand's formula, named after Israel Gelfand, gives the spectral radius as a limit of matrix norms.
For any matrix norm we have[3]
\rho(A)=\limk\left\|Ak\right
| ||||
\| |
Moreover, in the case of a consistent matrix norm
\limk\left\|Ak\right
| ||||
\| |
\rho(A)
\rho(A)\leq\left\|Ak\right
| ||||
\| |
k
For any, let us define the two following matrices:
A\pm=
1 | |
\rho(A)\pm\varepsilon |
A.
Thus,
\rho\left(A\pm\right)=
\rho(A) | |
\rho(A)\pm\varepsilon |
, \rho(A+)<1<\rho(A-).
We start by applying the previous theorem on limits of power sequences to :
\limk
k=0. | |
A | |
+ |
This shows the existence of such that, for all,
k | |
\left\|A | |
+ |
\right\|<1.
\left\|Ak\right
| ||||
\| |
<\rho(A)+\varepsilon.
Similarly, the theorem on power sequences implies that
k\| | |
\|A | |
- |
k | |
\left\|A | |
- |
\right\|>1.
\left\|Ak
| ||||
\right\| |
>\rho(A)-\varepsilon.
Let . Then,
\forall\varepsilon>0 \existsN\inN \forallk\geqN \rho(A)-\varepsilon<\left\|Ak\right
| ||||
\| |
<\rho(A)+\varepsilon,
\limk\left\|Ak\right
| ||||
\| |
=\rho(A).
Gelfand's formula yields a bound on the spectral radius of a product of commuting matrices: if
A1,\ldots,An
\rho(A1 … An)\leq\rho(A1) … \rho(An).
Consider the matrix
A=\begin{bmatrix} 9&-1&2\\ -2&8&4\\ 1&1&8 \end{bmatrix}
whose eigenvalues are ; by definition, . In the following table, the values of
\|Ak\|
| ||||
\|.\|1=\|.\|infty
k | \ | \cdot\ | _1=\ | \cdot\ | _\infty | \ | \cdot\ | _F | \ | \cdot\ | _2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 14 | 15.362291496 | 10.681145748 | ||||||||
2 | 12.649110641 | 12.328294348 | 10.595665162 | ||||||||
3 | 11.934831919 | 11.532450664 | 10.500980846 | ||||||||
4 | 11.501633169 | 11.151002986 | 10.418165779 | ||||||||
5 | 11.216043151 | 10.921242235 | 10.351918183 | ||||||||
\vdots | \vdots | \vdots | \vdots | ||||||||
10 | 10.604944422 | 10.455910430 | 10.183690042 | ||||||||
11 | 10.548677680 | 10.413702213 | 10.166990229 | ||||||||
12 | 10.501921835 | 10.378620930 | 10.153031596 | ||||||||
\vdots | \vdots | \vdots | \vdots | ||||||||
20 | 10.298254399 | 10.225504447 | 10.091577411 | ||||||||
30 | 10.197860892 | 10.149776921 | 10.060958900 | ||||||||
40 | 10.148031640 | 10.112123681 | 10.045684426 | ||||||||
50 | 10.118251035 | 10.089598820 | 10.036530875 | ||||||||
\vdots | \vdots | \vdots | \vdots | ||||||||
100 | 10.058951752 | 10.044699508 | 10.018248786 | ||||||||
200 | 10.029432562 | 10.022324834 | 10.009120234 | ||||||||
300 | 10.019612095 | 10.014877690 | 10.006079232 | ||||||||
400 | 10.014705469 | 10.011156194 | 10.004559078 | ||||||||
\vdots | \vdots | \vdots | \vdots | ||||||||
1000 | 10.005879594 | 10.004460985 | 10.001823382 | ||||||||
2000 | 10.002939365 | 10.002230244 | 10.000911649 | ||||||||
3000 | 10.001959481 | 10.001486774 | 10.000607757 | ||||||||
\vdots | \vdots | \vdots | \vdots | ||||||||
10000 | 10.000587804 | 10.000446009 | 10.000182323 | ||||||||
20000 | 10.000293898 | 10.000223002 | 10.000091161 | ||||||||
30000 | 10.000195931 | 10.000148667 | 10.000060774 | ||||||||
\vdots | \vdots | \vdots | \vdots | ||||||||
100000 | 10.000058779 | 10.000044600 | 10.000018232 |