A spatial reference system (SRS) or coordinate reference system (CRS) is a framework used to precisely measure locations on the surface of Earth as coordinates. It is thus the application of the abstract mathematics of coordinate systems and analytic geometry to geographic space. A particular SRS specification (for example, "Universal Transverse Mercator WGS 84 Zone 16N") comprises a choice of Earth ellipsoid, horizontal datum, map projection (except in the geographic coordinate system), origin point, and unit of measure. Thousands of coordinate systems have been specified for use around the world or in specific regions and for various purposes, necessitating transformations between different SRS.
Although they date to the Hellenic Period, spatial reference systems are now a crucial basis for the sciences and technologies of Geoinformatics, including cartography, geographic information systems, surveying, remote sensing, and civil engineering. This has led to their standardization in international specifications such as the EPSG codes[1] and ISO 19111:2019 Geographic information—Spatial referencing by coordinates, prepared by ISO/TC 211, also published by the Open Geospatial Consortium as Abstract Specification, Topic 2: Spatial referencing by coordinate.[2]
The thousands of spatial reference systems used today are based on a few general strategies, which have been defined in the EPSG, ISO, and OGC standards:
These standards acknowledge that standard reference systems also exist for measuring elevation using vertical datums and time (e.g. ISO 8601), which may be combined with a spatial reference system to form a compound coordinate system for representing three-dimensional and/or spatio-temporal locations. There are also internal systems for measuring location within the context of an object, such as the rows and columns of pixels in a raster image, Linear referencing measurements along linear features (e.g., highway mileposts), and systems for specifying location within moving objects such as ships. The latter two are often classified as subcategories of engineering coordinate systems.
The goal of any spatial reference system is to create a common reference frame in which locations can be measured precisely and consistently as coordinates, which can then be shared unambiguously, so that any recipient can identify the same location that was originally intended by the originator. To accomplish this, any coordinate reference system definition needs to be composed of several specifications:
Thus, a CRS definition will typically consist of a "stack" of dependent specifications, as exemplified in the following table:
EPSG Code | Name | Ellipsoid | Horizontal Datum | CS Type | Projection | Origin | Axes | Unit of Measure | |
---|---|---|---|---|---|---|---|---|---|
4326 | GCS WGS 84 | ellipsoidal (lat, lon) | N/A | equator/prime meridian | equator, prime meridian | degree of arc | |||
26717 | UTM Zone 17N NAD 27 | Clarke 1866 | cartesian (x,y) | Transverse Mercator: central meridian 81°W, scaled 0.9996 | 500 km west of (81°W, 0°N) | equator, 81°W meridian | meter | ||
6576 | SPCS Tennessee Zone NAD 83 (2011) ftUS | NAD 83 (2011 epoch) | cartesian (x,y) | Lambert Conformal Conic: center 86°W, 34°20'N, standard parallels 35°15'N, 36°25'N | 600 km grid west of center point | grid east at center point, 86°W meridian | US survey foot |
Examples of systems around the world are:
A Spatial Reference System Identifier (SRID) is a unique value used to unambiguously identify projected, unprojected, and local spatial coordinate system definitions. These coordinate systems form the heart of all GIS applications.
Virtually all major spatial vendors have created their own SRID implementation or refer to those of an authority, such as the EPSG Geodetic Parameter Dataset.
SRIDs are the primary key for the Open Geospatial Consortium (OGC) spatial_ref_sys metadata table for the Simple Features for SQL Specification, Versions 1.1 and 1.2, which is defined as follows:
UTM, Zone 17N, NAD27 — SRID 2029:
WGS84 — SRID 4326
SRID values associated with spatial data can be used to constrain spatial operations — for instance, spatial operations cannot be performed between spatial objects with differing SRIDs in some systems, or trigger coordinate system transformations between spatial objects in others.