In mathematics, a sparsely totient number is a certain kind of natural number. A natural number, n, is sparsely totient if for all m > n,
\varphi(m)>\varphi(n)
where
\varphi
2, 6, 12, 18, 30, 42, 60, 66, 90, 120, 126, 150, 210, 240, 270, 330, 420, 462, 510, 630, 660, 690, 840, 870, 1050, 1260, 1320, 1470, 1680, 1890, 2310, 2730, 2940, 3150, 3570, 3990, 4620, 4830, 5460, 5610, 5670, 6090, 6930, 7140, 7350, 8190, 9240, 9660, 9870, ... .
The concept was introduced by David Masser and Peter Man-Kit Shiu in 1986. As they showed, every primorial is sparsely totient.
\liminfP(n)/logn=1
P(n)\lllog\deltan
\delta=37/20
\limsupP(n)/logn=2