In theoretical physics, a source field is a background field
J
\phi
Ssource=J\phi
Schwinger's source theory stems from Schwinger's quantum action principle and can be related to the path integral formulation as the variation with respect to the source per se
\deltaJ
\phi
\deltaJ=\intl{D}\phi~e-i\int
Also, a source acts effectively[2] in a region of the spacetime. As one sees in the examples below, the source field appears on the right-hand side of the equations of motion (usually second-order partial differential equations) for
\phi
\phi
In terms of the statistical and non-relativistic applications, Schwinger's source formulation plays crucial rules in understanding many non-equilibrium systems.[5] [6] Source theory is theoretically significant as it needs neither divergence regularizations nor renormalization.
In the Feynman's path integral formulation with normalization
l{N}\equivZ[J=0]
Z[J]=l{N}\intl{D}\phi~e-i\int(t;\phi,
\phi |
)+J(t)\phi(t)]}
generates Green's functions (correlators)
G(t1, … ,t
| ||||
N)=(-i) |
|J=0
One implements the quantum variational methodology to realize that
J
\phi
Z[J]
eJ\phi
l{H}=E\hat{a}\dagger\hat{a}-
1 | |
\sqrt{2E |
E2=m2+\vec{p}2
In fact, the current is real, that is
J=J*
l{L}=i\hat{a}\dagger\partial0(\hat{a})-l{H}
\phi\sim(a\dagger+a)
\deltaJ\langle0,x'0|0,x''0\rangleJ=i\langle0,x'
x'0 | |
x''0 |
dx0~\deltaJ(a\dagger+a)|0,x''0~\rangleJ
x0'>x0>x0''
As the integral is in the time domain, one can Fourier transform it, together with the creation/annihilation operators, such that the amplitude eventually becomes
\langle0,x'0|0,x''0\rangle
|
\intdf~J(f)
1 | |
f-E |
J(-f)]}
It is easy to notice that there is a singularity at
f=E
i\epsilon
f-E+i\epsilon
x0>x0'
\begin{align} \langle0|0\rangleJ&=\exp{[
i | |
2 |
\intdx0~dx'0J(x0)\Delta(x0-x'0)J(x'0)]}\\ &\Delta(x0-x'0)=\int
df | |
2\pi |
| |||||
f-E+i\epsilon |
\end{align}
The last result is the Schwinger's source theory for interacting scalar fields and can be generalized to any spacetime regions. The discussed examples below follow the metric
η\mu\nu=diag(1,-1,-1,-1)
Causal perturbation theory explains how sources weakly act. For a weak source emitting spin-0 particles
Je
\langle
0|0\rangle | |
Je |
\sim1
p
\langle
p|0\rangle | |
Je |
x'
Ja
x
\langle
0|p\rangle | |
Ja |
\langle
0|0\rangle | \sim1+ | |
Je+Ja |
i | |
2 |
\intdx~dx'Ja(x)\Delta(x-x')Je(x')
where
\Delta(x-x')
\phi
J
| ||||
\mu |
\phi\partial\mu\phi-
1 | |
2 |
m2\phi2+J\phi.
If one adds
-i\epsilon
J
\phi
\langle0|0\rangle=\exp{\left(
i | |
2 |
\int
d4p | |
(2\pi)4 |
\left[\tilde{\phi}(p)(p\mup\mu
| ||||
-m |
J(-p)\right]\right)}
where
\tilde{\phi}(p)=\phi(p)+ | J(p) |
p\mup\mu-m2+i\epsilon |
.
\tilde{\phi}(p)(p\mup\mu-m2+i\epsilon)\tilde{\phi}(-p)
\tilde{\phi}(x)(\Box+m2)\tilde{\phi}(x)=\tilde{\phi}(x)J(x)
(\Box+m2)\tilde{\phi}=J
Thus, the generating functional is obtained from the partition function as follows. The last result allows us to read the partition function as
| |||||
Z[J]=Z[0]e |
Z[0]=\intl{D}\tilde{\phi}~
| ||||||
e |
\partial\mu\tilde{\phi}-
1 | |
2 |
(m2-i\epsilon)\tilde{\phi}2]}
\langleJ(y)\Delta(y-y')J(y')\rangle
\langle0|0\rangleJ
\begin{align} | -1 |
Z[0] |
\delta2Z[J] | |
\deltaJ(x)\deltaJ(x') |
\vertJ=0&=
-1 | |
2Z[0] |
\delta | |
\deltaJ(x) |
\{Z[J]\left(\intd4y'\Delta(x'-y')J(y')+\intd4yJ(y)\Delta(y-x')\right)\}\vertJ=0=
Z[J] | |
Z[0] |
\Delta(x-x')\vertJ=0\ \\ &=\Delta(x-x'). \end{align}
Based on Schwinger's source theory, Steven Weinberg established the foundations of the effective field theory, which is widely appreciated among physicists. Despite the "shoes incident", Weinberg gave the credit to Schwinger for catalyzing this theoretical framework.[10]
All Green's functions may be formally found via Taylor expansion of the partition sum considered as a function of the source fields. This method is commonly used in the path integral formulation of quantum field theory. The general method by which such source fields are utilized to obtain propagators in both quantum, statistical-mechanics and other systems is outlined as follows. Upon redefining the partition function in terms of Wick-rotated amplitude
W[J]=-iln(\langle0|0\rangleJ)
Z[J]=eiW[J]
F[J]=iW[J]
lnZ[J]=F[J]
F[J]
\Gamma[\bar{\phi}]=W[J]-\intd4xJ(x)\bar{{\phi}}(x)
\deltaW | =\bar{\phi}~,~ | |
\deltaJ |
\deltaW | |
\deltaJ |
|J=0=\langle\phi\rangle~,~
\delta\Gamma[\bar{\phi | |
]}{\delta |
\bar{\phi}}|J=-J~,~
\delta\Gamma[\bar{\phi | |
]}{\delta |
\bar{\phi}}|\bar{\phi=\langle\phi\rangle}=0.
The integration in the definition of the effective action is allowed to be replaced with sum over
\phi
a(x) | |
\Gamma[\bar{\phi}]=W[J]-J | |
a(x)\bar{{\phi}} |
F=E-TS
The
\langle\phi\rangle
\langle\phi\rangle= | \intl{D |
\phi |
~e-i\int(t;\phi,
\phi |
)+J(t)\phi(t)]}~\phi~}{Z[J]/l{N}}
\bar{\phi}
\phi
\bar{\phi}
η
\phi=\bar{\phi}+η
ei\Gamma[\bar{\phi]}=l{N}\int\exp{\{i[S[\phi]-(
\delta | |
\delta\bar{\phi |
and any function
l{F}[\phi]
\langlel{F}[\phi]\rangle=e-i\Gamma[\bar{\phi]}~l{N}\intl{F}[\phi]~\exp{\{i[S[\phi]-(
\delta | |
\delta\bar{\phi |
where
S[\phi]
Back to Green functions of the actions. Since
\Gamma[\bar{\phi}]
F[J]
F[J]
N,~c | ||
G | = | |
F[J] |
\deltaF[J] | |
\deltaJ(x1) … \deltaJ(xN) |
|J=0
F[J]
N,~c | ||
G | = | |
\Gamma[J] |
\delta\Gamma[\bar{\phi | |
]}{\delta |
\bar{\phi}(x1) … \delta\bar{\phi}(xN)}|\bar{\phi=\langle\phi\rangle}
F
\Gamma
(2) | ||
G | = | |
F[J] |
\delta\bar{\phi | |
(x |
1)}{\deltaJ(x2)}|J=0=
1 | |
p\mup\mu-m2 |
(2) | ||
G | = | |
\Gamma[\phi] |
\deltaJ(x1) | |
\delta\bar{\phi |
(x2)}|\bar{\phi=\langle\phi\rangle}=p\mup\mu-m2
Ji=J(xi)
F[J]
Z[J]
\begin{align} | \deltanF |
\deltaJ1 … \deltaJN |
=&
1 | |
Z[J] |
\deltanZ[J] | |
\deltaJ1 … \deltaJN |
-\{
1 | |
Z2[J] |
\deltaZ[J] | |
\deltaJ1 |
\deltan-1Z[J] | |
\deltaJ2 … \deltaJN |
+perm\}+\{
1 | |
Z3[J] |
\deltaZ[J] | |
\deltaJ1 |
\deltaZ[J] | |
\deltaJ2 |
\deltan-2Z[J] | |
\deltaJ3 … \deltaJN |
+perm\}+ … \\ &-\{
1 | |
Z2[J] |
\delta2Z[J] | |
\deltaJ1\deltaJ2 |
\deltan-2Z[J] | |
\deltaJ3 … \deltaJN |
+perm\}+\{
1 | |
Z3[J] |
\delta3Z[J] | |
\deltaJ1\deltaJ2\deltaJ3 |
\deltan-3Z[J] | |
\deltaJ4 … \deltaJN |
+perm\}- … \end{align}
\begin{align} | 1 |
Z[J] |
\deltanZ[J] | |
\deltaJ1 … \deltaJN |
=&
\deltanF[J] | |
\deltaJ1 … \deltaJN |
+\{
\deltaF[J] | |
\deltaJ1 |
\deltan-1F[J] | |
\deltaJ2 … \deltaJN |
+perm\}+\{
\deltaF[J] | |
\deltaJ1 |
\deltaF[J] | |
\deltaJ2 |
\deltan-2F[J] | |
\deltaJ3 … \deltaJN |
+perm\}+ … \\ &+\{
\delta2F[J] | |
\deltaJ1\deltaJ2 |
\deltan-2F[J] | |
\deltaJ3 … \deltaJN |
+perm\}+\{
\delta3F[J] | |
\deltaJ1\deltaJ2\deltaJ3 |
\deltan-3F[J] | |
\deltaJ4 … \deltaJN |
+perm\}+ … \end{align}
For a weak source producing a missive spin-1 particle with a general current
J=Je+Ja
x0>x0'
\langle0|0\rangleJ=\exp{\left(
i | |
2 |
\intdx~dx'\left[J\mu(x)\Delta(x-x')J\mu(x')+
1 | |
m2 |
\partial\mu J\mu(x)\Delta(x-x')\partial'\nuJ\nu(x')\right]\right)}
In momentum space, the spin-1 particle with rest mass
m
p\mu=(m,0,0,0)
p\mup\mu=m2
\begin{alignat}{2}(J\mu(p))T~J\mu(p)-
1 | |
m2 |
(p\mu J\mu
T~p | |
(p)) | |
\nu |
J\nu(p)&=(J\mu(p))T~J\mu(p)-(J\mu
| ||||
(p)) |
|on-shell~J\nu(p)\ &=(J\mu
T~\left[η | ||
(p)) | - | |
\mu\nu |
p\mu p\nu | |
m2 |
\right]~J\nu(p) \end{alignat}
where
η\mu\nu=diag(1,-1,-1,-1)
(J\mu(p))T
J\mu(p)
\langle0|TA\mu(x)A\nu(x')|0\rangle=-i\int
d4p | |
(2\pi)4 |
1 | |
p\alphap\alpha+i\epsilon |
\left[η\mu\nu-(1-\xi)
p\mu p\nu | |
p\sigmap\sigma-\xim2 |
ip\mu(x\mu-x'\mu) | |
\right]e |
When
\xi=1
\xi=0
W[J]=-iln(\langle0|0\rangleJ)=
1 | |
2 |
\intdx~dx'\left[J\mu(x)\Delta(x-x')J\mu(x')+
1 | |
m2 |
\partial\mu J\mu(x)\Delta(x-x')\partial'\nuJ\nu(x')\right].
One can apply integration by part on the second term then single out
\intdxJ\mu(x)
A\mu(x)\equiv\intdx'\Delta(x-x')J\mu(x')-
1 | |
m2 |
\partial\mu \left[\intdx'\Delta(x-x')\partial'\nuJ\nu(x')\right].
Additionally, the equation above says that
\partial\muA\mu
2)\partial | |
=(1/m | |
\mu |
J\mu
2)A | |
\begin{align} (\Box+m | |
\mu |
=J\mu+
1 | |
m2 |
\partial\nu\partial\muJ\nu
2)A | |
,\\ (\Box+m | |
\mu |
+\partial\nu\partial\muA\nu=J\mu. \end{align}
For a weak source in a flat Minkowski background, producing then absorbing a missive spin-2 particle with a general redefined energy-momentum tensor, acting as a current,
\bar{T}\mu\nu=T\mu\nu-
1 | |
3 |
η\mu\alpha\bar{η}\nu\betaT\alpha\beta
\bar{η}\mu\nu(p)=(η\mu\nu-
1 | |
m2 |
p\mu p\nu)
\begin{align} \langle0|0\rangle\bar{T
\end
or
\begin{align} \langle0|0\rangleT=\exp(-
i | |
2 |
\int&[T\mu\nu(x)\Delta(x-x')T\mu\nu(x') +
2 | |
m2 |
ηλ\nu\partial\mu T\mu\nu(x)\Delta(x-x')\partial'\kappaT\kappaλ(x')\\ &+
1 | |
m4 |
\partial\mu \partial\mu T\mu\nu(x)\Delta(x-x')\partial'\kappa\partial'λT\kappaλ(x')\\ &-
1 | |
3 |
\left(η\mu\nuT\mu\nu(x)-
1 | |
m2 |
\partial\mu \partial\nu T\mu\nu(x)\right)\Delta(x-x')\left(η\kappaλT\kappaλ(x')-
1 | |
m2 |
\partial'\kappa \partial'λ T\kappaλ(x')\right)]dx~dx'). \end{align}
This amplitude in momentum space gives (transpose is imbedded)
\begin{align} \bar{T}\mu\nu(p)η\mu\kappaη\nuλ\bar{T}\kappaλ(p) &-
1 | |
m2 |
\bar{T}\mu\nu(p)η\mu\kappap\nu pλ\bar{T}\kappaλ(p)\\ &-
1 | |
m2 |
\bar{T}\mu\nu(p)η\nuλp\mu p\kappa\bar{T}\kappaλ(p)+
1 | |
m4 |
\bar{T}\mu\nu(p)p\mu p\nu p\kappapλ\bar{T}\kappaλ(p)= \end{align}
\begin{align} η\mu\kappa(\bar{T}\mu\nu(p)η\nuλ\bar{T}\kappaλ(p)&-
1 | |
m2 |
\bar{T}\mu\nu(p)p\nu pλ\bar{T}\kappaλ(p))\\ &-
1 | |
m2 |
p\mu p\kappa(\bar{T}\mu\nu(p)η\nuλ\bar{T}\kappaλ(p)-
1 | |
m2 |
\bar{T}\mu\nu(p)p\nu pλ\bar{T}\kappaλ(p))=\\ (η\mu\kappa-
1 | |
m2 |
p\mu p\kappa)(&\bar{T}\mu\nu(p)η\nuλ\bar{T}\kappaλ(p)-
1 | |
m2 |
\bar{T}\mu\nu(p)p\nu pλ\bar{T}\kappaλ(p))=\\ &\bar{T}\mu\nu(p)(η\mu\kappa-
1 | |
m2 |
p\mu p\kappa)(η\nuλ-
1 | |
m2 |
p\nu pλ)\bar{T}\kappaλ(p). \end{align}
And with help of symmetric properties of the source, the last result can be written as
T\mu\nu(p)\Pi\mu\nu\kappaλ(p)T\kappaλ(p)
\Pi\mu\nu\kappaλ(p)=
1 | |
2 |
(\bar{η}\mu\kappa(p)\bar{η}\nuλ(p)+\bar{η}\muλ(p)\bar{η}\nu\kappa(p)-
2 | |
3 |
\bar{η}\mu\nu(p)\bar{η}\kappaλ(p))
In N-dimensional flat spacetime, 2/3 is replaced by 2/(N-1).[20] And for massless spin-2 fields, the projection operator is defined as
m=0 | ||
\Pi | = | |
\mu\nu\kappaλ |
1 | |
2 |
(η\mu\kappaη\nuλ+η\muλη\nu\kappa-
1 | |
2 |
η\mu\nuη\kappaλ)
Together with help of Ward-Takahashi identity, the projector operator is crucial to check the symmetric properties of the field, the conservation law of the current, and the allowed physical degrees of freedom.
It is worth noting that the vacuum polarization tensor
\bar{η}\nu\beta
\bar{T}\mu\nu
If one looks at
\langle0|0\rangleT
\begin{align} h\mu\nu(x)&=\int\Delta(x-x')T\mu\nu(x')dx' -
1 | |
m2 |
\partial\mu \int\Delta(x-x')\partial'\kappaT\kappa\nu(x')dx'-
1 | |
m2 |
\partial\nu \int\Delta(x-x')\partial'\kappaT\kappa\mu(x')dx'\\ &+
1 | |
m4 |
\partial\mu \partial\mu \int\Delta(x-x')\partial'\kappa\partial'λT\kappaλ(x')dx'\\ &-
1 | |
3 |
\left(η\mu\nu-
1 | |
m2 |
\partial\mu \partial\mu \right)\int\Delta(x-x')\left[η\kappaλT\kappaλ(x')-
1 | |
m2 |
\partial'\kappa \partial'λ T\kappaλ(x')\right]dx'. \end{align}
The corresponding divergence condition is read
\partial\muh\mu\nu-\partial\nuh=
1 | |
m2 |
\partial\muT\mu\nu
\partial\muT\mu\nu
ak{T}\mu\nu=T\mu\nu-
1 | |
4 |
η\mu\nuak{T}
\partial\muak{T}\mu\nu=0
\left(\square+m2\right)h\mu\nu=T\mu\nu+\dfrac{1}{m2
becomes
\left(\square+m2\right)h\mu\nu=ak{T}\mu\nu-
1 | |
4 |
~η\mu\nuak{T}-\dfrac{1}{6m4
One can use the divergence condition to decouple the non-physical fields
\partial\muh\mu\nu
h
\left(\square+m2\right)h\mu\nu=ak{T}\mu\nu-
1 | |
3 |
~η\mu\nu
| ||||
\mu |
\partial\nuak{T}
One can generalize
T\mu\nu(p)
\mu1 … \mu\ell | |
S |
(p)
T\mu\nu(p)\Pi\mu\nu\kappaλ(p)T\kappaλ(p)
\mu1 … \mu\ell | |
S |
(p)
\Pi | |
\mu1 … \mu\ell\nu1 … \nu\ell |
(p)
\nu1 … \nu\ell | |
S |
(p)
\mu | |
e | |
m |
(p)
x~and~x'
\mu1 | |
x |
…
\mu\ell | |
x |
\Pi | |
\mu1 … \mu\ell\nu1 … \nu\ell |
(p)
\nu1 | |
x' |
…
\nu\ell | ||
x' | = |
2\ell(\ell!)2 | |
(2\ell)! |
4\pi | |
2\ell+1 |
\ell | |
\sum\limits | |
m=-\ell |
Y\ell,m
* | |
(x)Y | |
\ell,m |
(x')
Also, the representation theory of the space of complex-valued homogeneous polynomials of degree
\ell
e(m)(x1,...,xn)=
\sum | |
i1...i\ell |
e | |
(m)i1...i\ell |
x | |
i1 |
…
x | |
i\ell |
,~\forallxi\inSN-1.
\mu1 … \mu\ell | |
e |
(p)~
x | |
\mu1 |
…
x | =\sqrt{ | |
\mu\ell |
2\ell(\ell!)2 | |
(2\ell)! |
4\pi | |
2\ell+1 |
And the projection operator can be defined as
\mu1 … \mu\ell\nu1 … \nu\ell | |
\Pi |
\ell | |
(p)=\sum\limits | |
m=-\ell |
\mu1 … \mu\ell | |
[e | |
m |
\nu1 … \nu\ell | |
(p)]~[e | |
m |
(p)]*
The symmetric properties of the projection operator make it easier to deal with the vacuum amplitude in the momentum space. Therefore rather that we express it in terms of the correlator
\Delta(x-x')
\langle0|0\rangle | \int | ||||
|
dp4 | |
(2\pi)4 |
\mu1 … \mu\ell | |
S |
(-p)
| |||||||
p\sigmap\sigma-m2+i\epsilon |
\nu1 … \nu\ell | |
S |
(p)]}
T[\mu\nu]λ
S[\mu\nu]λ=\partial\alpha\partial\alphaT[\mu\nu]λ
\langle0|0\rangleS=\exp{\left(-
1 | |
2 |
\intdx~dx'\left[S[\mu\nu]λ(x)\Delta(x-x')S[\mu\nu]λ(x')+
2 | |
3-N |
S[\mu\alpha]\alpha(x)\Delta(x-x')S[\mu\beta]\beta(x')\right]\right)}
For spin-
1 | |
2 |
S(x-x')=(p/+m)\Delta(x-x')
J=Je+Ja
\begin{align} \langle0|0\rangleJ&=\exp{[
i | |
2 |
\intdxdx'~J(x)~(\gamma0S(x-x'))~J(x')]}\\ &=\langle
0|0\rangle | |
Je |
\exp{[i\intdxdx'
0 | |
~J | |
e(x)~(\gamma |
S(x-x')~)~Ja(x')]}\langle
0|0\rangle | |
Ja |
. \end{align}
In momentum space the reduced amplitude is given by
W | =- | ||||
|
1 | |
3 |
\int
d4p | |
(2\pi)4 |
| ||||
~J(-p)[\gamma |
]~J(p).
For spin-
3 | |
2 |
\Pi\mu\nu=\bar{η}\mu\nu-
1 | |
3 |
\gamma\alpha\bar{η}\alpha\mu\gamma\beta\bar{η}\beta\nu.
\gamma\mu=η\mu\nu\gamma\nu
p/=-m
\begin{align} W | &=- | ||||
|
2 | |
5 |
\int
d4p | |
(2\pi)4 |
~J\mu
| ||||
(-p)~[\gamma |
|on-shell-
1 | |
3 |
\gamma\alpha\bar{η}\alpha\mu|on-shell\gamma\beta\bar{η}\beta\nu|on-shell)}{p2-m2}]~J\nu(p)\\ &=-
2 | |
5 |
\int
d4p | |
(2\pi)4 |
~J\mu
| ||||||||||||||||||||||
(-p)~[\gamma |
]~J\nu(p). \end{align}
One can replace the reduced metric
\bar{η}\mu\nu
η\mu\nu
J\mu
\bar{J}\mu(p)=
2 | |
5 |
\gamma\alpha\Pi\mu\alpha\nu\beta\gamma\betaJ\nu(p).
For spin-
(j+ | 1 |
2 |
)
W | =- | ||||
|
j+1 | |
2j+3 |
\int
d4p | |
(2\pi)4 |
\mu1 … \muj | |
~J |
| ||||||||||||||
(-p)~[\gamma |
\nu1 … \nuj | |
]~J |
(p).
The factor
j+1 | |
2j+3 |