Ensifer meliloti explained

Ensifer meliloti (formerly Rhizobium meliloti and Sinorhizobium meliloti)[1] are an aerobic, Gram-negative, and diazotrophic species of bacteria. S. meliloti are motile and possess a cluster of peritrichous flagella. S. meliloti fix atmospheric nitrogen into ammonia for their legume hosts, such as alfalfa. S. meliloti forms a symbiotic relationship with legumes from the genera Medicago, Melilotus and Trigonella, including the model legume Medicago truncatula. This symbiosis promotes the development of a plant organ, termed a root nodule. Because soil often contains a limited amount of nitrogen for plant use, the symbiotic relationship between S. meliloti and their legume hosts has agricultural applications.[2] These techniques reduce the need for inorganic nitrogenous fertilizers.[3]

Symbiosis

Symbiosis between S. meliloti and its legume hosts begins when the plant secretes an array of betaines and flavonoids into the rhizosphere: 4,4′-dihydroxy-2′-methoxychalcone, chrysoeriol,[4] cynaroside, 4′,7-dihydroxyflavone, 6′′-O-malonylononin,[5] liquiritigenin,[6] luteolin,[7] 3′,5-dimethoxyluteolin, 5-methoxyluteolin, medicarpin, stachydrine,[8] and trigonelline. These compounds attract S. meliloti to the surface of the root hairs of the plant where the bacteria begin secreting nod factors. This initiates root hair curling. The rhizobia then penetrate the root hairs and proliferate to form an infection thread. Through the infection thread, the bacteria move toward the main root. The bacteria develop into bacteroids within newly formed root nodules and perform nitrogen fixation for the plant. A S. meliloti bacterium does not perform nitrogen fixation until it differentiates into a endosymbiotic bacteroid. A bacteroid depends on the plant for survival.[9]

Leghemoglobin, produced by leguminous plants after colonization of S. meliloti, interacts with the free oxygen in the root nodule where the rhizobia reside. Rhizobia are contained within symbiosomes in the root nodules of leguminous plants. The leghemoglobin reduces the amount of free oxygen present. Oxygen disrupts the function of the nitrogenase enzyme in the rhizobia, which is responsible for nitrogen fixation.[10]

Genome

The S. meliloti genome contains four genes coding for flagellin. These include fliC1C2–fliC3C4.[11] The genome contains three replicons: a chromosome (~3.7 megabases), a chromid (pSymB; ~1.7 megabases), and a plasmid (pSymA; ~1.4 megabases). Individual strains may possess additional, accessory plasmids. Five S. meliloti genomes have been sequenced to date: Rm1021,[12] AK83,[13] BL225C, Rm41,[14] and SM11[15] with 1021 considered to be the wild type. Indeterminate nodule symbiosis by S. meliloti is conferred by genes residing on pSymA.[16]

DNA repair

The proteins encoded by E. meliloti genes uvrA, uvrB and uvrC are employed in the repair of DNA damages by the process of nucleotide excision repair. E. meliloti is a desiccation tolerant bacterium. However, E. meliloti mutants defective in either genes uvrA, uvrB or uvrC are sensitive to desiccation, as well as to UV light.[17] This finding indicates that the desiccation tolerance of wild-type E. meliloti depends on the repair of DNA damages that can be caused by desiccation.

Bacteriophage

Several bacteriophages that infect Sinorhizobium meliloti have been described:[18] Φ1,[19] Φ1A,[20] Φ2A, Φ3A,[21] Φ4 (=ΦNM8), Φ5t (=ΦNM3), Φ6 (=ΦNM4), Φ7 (=ΦNM9), Φ7a, Φ9 (=ΦCM2),[22] Φ11 (=ΦCM9),[22] Φ12 (=ΦCM6),[22] Φ13, Φ16, Φ16-3,[23] Φ16a, Φ16B,[21] Φ27, Φ32, Φ36, Φ38, Φ43, Φ70, Φ72, Φ111, Φ143, Φ145, Φ147, Φ151, Φ152, Φ160, Φ161, Φ166, Φ2011,[24] ΦA3, ΦA8, ΦA161,[24] ΦAL1, ΦCM1,[24] ΦCM3,[24] ΦCM4,[24] ΦCM5,[24] ΦCM7,[24] ΦCM8,[24] ΦCM20,[24] ΦCM21,[24] ΦDF2,[25] Φf2D, ΦF4,[26] ΦFAR, ΦFM1,[24] ΦK1,[27] ΦL1,[28] ΦL3, ΦL5, ΦL7, ΦL10, ΦL20, ΦL21, ΦL29, ΦL31, ΦL32, ΦL53, ΦL54, ΦL55, ΦL56, ΦL57, ΦL60, ΦL61, ΦL62, ΦLO0, ΦLS5B,[24] ΦM1, ΦM1,[29] ΦM1-5,[24] ΦM2,[30] ΦM3, ΦM4, ΦM5,[31] ΦM5 (=ΦF20), ΦM5N1,[24] ΦM6, ΦM7, ΦM8, ΦM9, ΦM10, ΦM11, ΦM11S,[24] ΦM12,[32] [33] ΦM14, ΦM14S,[24] ΦM19,[34] ΦM20S,[24] [35] ΦM23S,[24] ΦM26S,[24] ΦM27S,[24] ΦMl,[36] ΦMM1C,[24] ΦMM1H,[24] ΦMP1,[37] ΦMP2, ΦMP3, ΦMP4, ΦN2, ΦN3, ΦN4, ΦN9, ΦNM1, ΦNM2, ΦNM6, ΦNM7, ΦP6, ΦP10, ΦP33, ΦP45, ΦPBC5,[38] ΦRm108,[39] ΦRmp26,[40] ΦRmp36,[40] ΦRmp38,[40] ΦRmp46,[40] ΦRmp50,[40] ΦRmp52,[40] ΦRmp61,[40] ΦRmp64,[40] ΦRmp67,[40] ΦRmp79,[40] ΦRmp80,[40] ΦRmp85,[40] ΦRmp86,[40] ΦRmp88,[40] ΦRmp90,[40] ΦRmp145,[40] ΦSP, ΦSSSS304,[41] ΦSSSS305, ΦSSSS307, ΦSSSS308, and ΦT1. Of these, ΦM5, ΦM12, Φ16-3[42] and ΦPBC5 have been sequenced. As of March 2020 the International Committee on Taxonomy of Viruses (ICTV) has accepted the following species in its Master Species List 2019.v1 (#35):

External links

Further reading

Notes and References

  1. Nelson. Matthew. Guhlin. Joseph. Epstein. Brendan. Tiffin. Peter. Sadowsky. Michael J.. May 2018. The complete replicons of 16 Ensifer meliloti strains offer insights into intra- and inter-replicon gene transfer, transposon-associated loci, and repeat elements. Microbial Genomics. 4. 5. 10.1099/mgen.0.000174. 2057-5858. 5994717. 29671722.
  2. Adjei. M.B.. July 2006. Nitrogen Fixation and Inoculation of Forage Legumes. Uf/Ifas. https://web.archive.org/web/20161202170130/http://www1.foragebeef.ca/$Foragebeef/frgebeef.nsf/all/frg90/$FILE/fertilitylegumefixation.pdf. 2016-12-02.
  3. Bederska-Błaszczyk. Magdalena. Sujkowska-Rybkowska. Marzena. Borucki. Wojciech. 2021-01-04. Sinorhizobium medicae 419 vs S. meliloti 1021: differences in root nodules induced by these two strains on the Medicago truncatula host. Acta Physiologiae Plantarum. en. 43. 1. 7. 10.1007/s11738-020-03166-1. 230717774. 1861-1664.
  4. Hartwig UA, Maxwell CA, Joseph CM, Phillips DA . Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Genes in Rhizobium meliloti . Plant Physiology . 92 . 1 . 116–22 . January 1990 . 16667231 . 1062256 . 10.1104/pp.92.1.116 .
  5. Dakora FD, Joseph CM, Phillips DA . Alfalfa (Medicago sativa L.) Root Exudates Contain Isoflavonoids in the Presence of Rhizobium meliloti . Plant Physiology . 101 . 3 . 819–824 . March 1993 . 12231731 . 158695 . 10.1104/pp.101.3.819 .
  6. Maxwell CA, Hartwig UA, Joseph CM, Phillips DA . A Chalcone and Two Related Flavonoids Released from Alfalfa Roots Induce nod Genes of Rhizobium meliloti . Plant Physiology . 91 . 3 . 842–7 . November 1989 . 16667146 . 1062085 . 10.1104/pp.91.3.842 .
  7. Peters NK, Frost JW, Long SR . A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes . Science . 233 . 4767 . 977–80 . August 1986 . 3738520 . 10.1126/science.3738520 . 1986Sci...233..977P .
  8. Phillips DA, Joseph CM, Maxwell CA . Trigonelline and Stachydrine Released from Alfalfa Seeds Activate NodD2 Protein in Rhizobium meliloti . Plant Physiology . 99 . 4 . 1526–31 . August 1992 . 16669069 . 1080658 . 10.1104/pp.99.4.1526 .
  9. Oldroyd. Giles E.D.. Downie. J. Allan. June 2008. Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes. Annual Review of Plant Biology. en. 59. 1. 519–546. 10.1146/annurev.arplant.59.032607.092839. 18444906. 1543-5008.
  10. Nadler. Kenneth D.. Avissar. Yeal J.. 1977-09-01. Heme Synthesis in Soybean Root Nodules: I. On the Role of Bacteroid δ-Aminolevulinic Acid Synthase and δ-Aminolevulinic Acid Dehydrase in the Synthesis of the Heme of Leghemoglobin. Plant Physiology. en. 60. 3. 433–436. 10.1104/pp.60.3.433. 0032-0889. 542631. 16660108.
  11. Book: Aizawa. Shin-Ichi. The Flagellar World. 2014-01-01. Academic Press. 9780124172340. 82–83. en. Sinorhizobium meliloti — Nitrogen–Fixer in the Grassland. 10.1016/B978-0-12-417234-0.00026-8.
  12. 6. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J. July 2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science. 293. 5530. 668–72. 10.1126/science.1060966. 11474104. 18580010.
  13. 6. Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Land M, Hauser L, Woyke T, Mikhailova N, Ivanova N, Daligault H, Bruce D, Detter C, Tapia R, Han C, Teshima H, Mocali S, Bazzicalupo M, Biondi EG. May 2011. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics. 12. 235. 10.1186/1471-2164-12-235. 3164228. 21569405 . free .
  14. The sequence hasn't been officially announced, but is available at NCBI: chromosome, pSymA, pSymB, and pRM41a.
  15. Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, Neuweger H, Stiens M, Vorhölter FJ, Weidner S, Goesmann A, Pühler A, Schlüter A. August 2011. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome. Journal of Biotechnology. 155. 1. 20–33. 10.1016/j.jbiotec.2010.12.018. 21396969.
  16. DiCenzo. George. Wellappili. Deelaka. Brian Golding. G. Finan. Turlough. 2018-03-21. Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome. G3: Genes, Genomes, Genetics. 8. 5. 1711–1720. 10.1534/g3.117.300405. 5940162. 29563186.
  17. Humann JL, Ziemkiewicz HT, Yurgel SN, Kahn ML. Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Appl Environ Microbiol. 2009 Jan;75(2):446-53. doi: 10.1128/AEM.02207-08. Epub 2008 Nov 21. PMID 19028909; PMCID: PMC2620701
  18. Systematic naming of bacteriophages is rarely followed in the scientific literature, and a variety of phages can share the same name. While there exists an RNA phage called ΦM12, which infects enterobacteria, it is not synonymous with the DNA phage ΦM12 listed here. The same may be true for other phages in this list. Within this list, two phages have independently been named ΦM5.
  19. Lesley SM . A bacteriophage typing system for Rhizobium meliloti. . Canadian Journal of Microbiology . 28 . 2 . 180–189 . 1982 . 10.1139/m82-024 .
  20. Singh RB, Dhar B, Singh BD . Morphology and general characteristics of viruses active against cowpea Rhizobium CB756 and 32H1 . Archives of Virology . 64 . 1 . 17–24 . 1986 . 7377972 . 10.1002/jobm.3620270309 . 84732610 .
  21. Handelsman J, Ugalde RA, Brill WJ . Rhizobium meliloti competitiveness and the alfalfa agglutinin . Journal of Bacteriology . 157 . 3 . 703–7 . March 1984 . 6698937 . 215314 . 10.1128/JB.157.3.703-707.1984.
  22. Krsmanovi-Simic D, Werquin M . Etude des bactériophages de Rhizobium meliloti. . Study of bacteriophages of Rhizobium meliloti . fr . Comptes Rendus de l'Académie des Sciences, Série D . 284 . 1851–1854 . 1977 . and Krsmanovi-Simic D, Werquin M . Etude des bactériophages de Rhizobium meliloti. . Study of bacteriophages of Rhizobium meliloti . fr . Comptes Rendus de l'Académie des Sciences, Série D . 276 . 19 . 2745–8 . 1973 . 4198859 .
  23. Szende K, Ördögh F . Die Lysogenie von Rhizobium meliloti. . Naturwissenschaften . 47 . 17 . 404–405 . 1960 . 10.1007/BF00631269 . 1960NW.....47..404S. 44438409 .
    The full genome of this phage is available at NCBI
  24. Werquin M, Ackermann HW, Levesque RC . A Study of 33 Bacteriophages of Rhizobium meliloti . Applied and Environmental Microbiology . 54 . 1 . 188–196 . January 1988 . 16347525 . 202420 . 10.1128/AEM.54.1.188-196.1988.
  25. Corral E, Montoya E, Olivares J . Sensitivity to phages in Rhizobium meliloti as a plasmid consequence. . Microbios Letters . 5 . 77–80 . 1978 .
  26. Kowalski M, Małek W, Czopska-Dolecka J, Szlachetka M . The effect of rhizobiophages on Sinorhizobium melilotiMedicago sativa symbiosis. . Biology and Fertility of Soils . 39 . 4 . 292–294 . 2004 . 10.1007/s00374-004-0721-y . 26352194 .
  27. Wdowiak S, Małek W, Grzadka M . Morphology and general characteristics of phages specific for Astragalus cicer rhizobia . Current Microbiology . 40 . 2 . 110–3 . February 2000 . 10594224 . 10.1007/s002849910021 . 5181655 .
  28. Kowalski M . Transduction in Rhizobium meliloti . Acta Microbiologica Polonica . 16 . 1 . 7–11 . 1967 . 4166074 . 10.1007/BF02661838 . 10908418 . Note that this article was reprinted in Plant and Soil (1971) 35 (1): 63 - 66, which is where the URL and doi direct to.
  29. Małek W . Properties of the transducing phage M1 of Rhizobium meliloti. . Journal of Basic Microbiology . 30 . 1 . 43–50 . 1990 . 10.1002/jobm.3620300114 . 86226063 .
  30. Johansen E, Finan TM, Gefter ML, Signer ER . Monoclonal antibodies to Rhizobium meliloti and surface mutants insensitive to them . Journal of Bacteriology . 160 . 1 . 454–7 . October 1984 . 6480561 . 214744 . 10.1128/JB.160.1.454-457.1984.
  31. Johnson MC, Sena-Veleza M, Washburn BK, Platta GN, Lua S, Brewer TE, Lynna JS, Stroupe ME, Jones KM . Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome . Journal of Structural Biology . 200 . 3 . 343–359 . December 2017 . 10.1016/j.jsb.2017.08.005 . 28842338 . free.
  32. Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER . General transduction in Rhizobium meliloti . Journal of Bacteriology . 159 . 1 . 120–4 . July 1984 . 6330024 . 215601 . 10.1128/JB.159.1.120-124.1984.
  33. Brewer Tess E, Elizabeth Stroupe M, Jones Kathryn M . The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages . Virology . 450-451. 84–97 . Dec 25, 2013 . 24503070 . 10.1016/j.virol.2013.11.027. free.
  34. Campbell GR, Reuhs BL, Walker GC . Different phenotypic classes of Sinorhizobium meliloti mutants defective in synthesis of K antigen . Journal of Bacteriology . 180 . 20 . 5432–6 . October 1998 . 9765576 . 107593 . 10.1128/JB.180.20.5432-5436.1998.
  35. Werquin M, Ackermann HW, Levesque RC . Characteristics and comparative study of five Rhizobium meliloti bacteriophages. . Current Microbiol. . 18 . 5 . 307–311 . 1989 . 10.1007/BF01575946 . 11937563 .
  36. Małek W . Properties of the transducing phage Ml of Rhizobium meliloti. . Journal of Basic Microbiology . 30 . 1 . 43–50 . 1990 . https://archive.today/20130105081804/http://www3.interscience.wiley.com/journal/114053184/abstract . dead . 2013-01-05 . 10.1002/jobm.3620300114 . 86226063 .
  37. Martin MO, Long SR . Generalized transduction in Rhizobium meliloti . Journal of Bacteriology . 159 . 1 . 125–9 . July 1984 . 6330025 . 215602 . 10.1128/JB.159.1.125-129.1984.
  38. This phage has never been formally reported in the scientific literature. However, the full genomic sequence has been uploaded to NCBI, available here.
  39. Novikova NI, Bazenova OV, Simarov BV . Phage sensitivity of natural and mutant strains of alfalfa nodule bacteria differing by cultural and symbiotic properties. (Summary in English) . Agric. Biol. . 2 . 35–39 . 1987 .
  40. Khanuja SP, Kumar S . Symbiotic and galactose utilization properties of phage RMP64-resistant mutants affecting three complementation groups in Rhizobium meliloti . Journal of Genetics . 68 . 2 . 93–108 . 1989 . 10.1007/BF02927852 . 25258531 .
  41. Sharma RS, Mishra V, Mohmmed A, Babu CR . Phage specificity and lipopolysaccarides of stem- and root-nodulating bacteria (Azorhizobium caulinodans, Sinorhizobium spp., and Rhizobium spp.) of Sesbania spp . Archives of Microbiology . 189 . 4 . 411–8 . April 2008 . 17989956 . 10.1007/s00203-007-0322-x . 5746480 .
  42. https://www.ncbi.nlm.nih.gov/nuccore/195546530 Φ16-3 Complete Genome