In robust statistics and computational geometry, simplicial depth is a measure of central tendency determined by the simplices that contain a given point. For the Euclidean plane, it counts the number of triangles of sample points that contain a given point.
The simplicial depth of a point
p
d
d
d+1
p
(d+1)
\tbinom{n}{d+1}
n
Under the standard definition of simplicial depth, the simplices that have
p
p
p
Simplicial depth is robust against outliers: if a set of sample points is represented by the point of maximum depth, then up to a constant fraction of the sample points can be arbitrarily corrupted without significantly changing the location of the representative point. It is also invariant under affine transformations of the plane.
However, simplicial depth fails to have some other desirable properties for robust measures of central tendency. When applied to centrally symmetric distributions, it is not necessarily the case that there is a unique point of maximum depth in the center of the distribution. And, along a ray from the point of maximum depth, it is not necessarily the case that the simplicial depth decreases monotonically.
For sets of
n
p
It possible to construct a data structure using ε-nets that can approximate the simplicial depth of a query point (given either a fixed set of samples, or a set of samples undergoing point insertions) in near-constant time per query, in any dimension, with an approximation whose error is a small fraction of the total number of triangles determined by the samples. In two dimensions, a more accurate approximation algorithm is known, for which the approximation error is a small multiple of the simplicial depth itself. The same methods also lead to fast approximation algorithms in higher dimensions.
Spherical depth,
SphD(q;F)
q
F\inRn
d
O(dn2)
SphD\ge
2 | |
3 |
SD