In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field.
The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. It is then called a simple algebra over this field.
Several references (e.g., or) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple). Under such terminology a non-zero ring with no non-trivial two-sided ideals is called quasi-simple.
Rings which are simple as rings but are not a simple module over themselves do exist: a full matrix ring over a field does not have any nontrivial two-sided ideals (since any ideal of
Mn(R)
Mn(I)
I
R
An immediate example of a simple ring is a division ring, where every nonzero element has a multiplicative inverse, for instance, the quaternions. Also, for any
n\ge1
n x n
Joseph Wedderburn proved that if a ring
R
k
k
Wedderburn proved these results in 1907 in his doctoral thesis, On hypercomplex numbers, which appeared in the Proceedings of the London Mathematical Society. His thesis classified finite-dimensional simple and also semisimple algebras over fields. Simple algebras are building blocks of semisimple algebras: any finite-dimensional semisimple algebra is a Cartesian product, in the sense of algebras, of finite-dimensional simple algebras.
One must be careful of the terminology: not every simple ring is a semisimple ring, and not every simple algebra is a semisimple algebra. However, every finite-dimensional simple algebra is a semisimple algebra, and every simple ring that is left- or right-artinian is a semisimple ring.
An example of a simple ring that is not semisimple is the Weyl algebra. The Weyl algebra also gives an example of a simple algebra that is not a matrix algebra over a division algebra over its center: the Weyl algebra is infinite-dimensional, so Wedderburn's theorem does not apply.
Wedderburn's result was later generalized to semisimple rings in the Wedderburn–Artin theorem: this says that every semisimple ring is a finite product of matrix rings over division rings. As a consequence of this generalization, every simple ring that is left- or right-artinian is a matrix ring over a division ring.
Let
R
C
H
F
F
R
n x n
R
C
H
R
n x n
R
H
C
C
k
k