Silicide hydride explained
A silicide hydride is a mixed anion compound that contains silicide (Si4− or clusters) and hydride (H−) anions. The hydrogen is not bound to silicon in these compounds. These can be classed as interstitial hydrides, Hydrogenated zintl phases, or Zintl phase hydrides.[1] In the related silanides, SiH3− anions or groups occur. Where hydrogen is bonded to the silicon, this is a case of anionic hydride, and where it is bonded to a more complex anion, it would be termed polyanionic hydride.[1]
Silicide hydrides may be prepared by heating a Zintl phase or metal silicide under hydrogen pressure, of perhaps 20 atmospheres.[2]
Properties
In CaSiD1+x the deuterium atom (D) fits in a tetrahedral hole between three calcium and one silicon atoms. The Si-D distance is 1.82 Å, quite a bit further than then a Si-H covalent bond.[3]
List
formula | system | space group | unit cell Å | volume | density | comment | reference |
---|
Li4Si2H | orthorhombic | Cmmm | | | | zigzag Si chains Si-Si 2.39 | [4] |
CaSiH | | | | | | | |
CaSiH1+x x<1.2 | orthorhombic | Pnma | a = 14.4884, b = 3.8247, c = 11.2509, Z = 3 | | | zigzag Si chains Si-Si 2.47 | |
CaAlSiH | trigonal | | Z=1 | | | Al-H bond semimetal | |
Ca2SiH2.41 | amorphous | | a=5.969 b=3.6146 c=6.815 | | | reversible hydrogen storage | |
Ca5Si3H0.53 | tetrahedral | I4/mcm | a=7.6394 c=14.7935 Z=4 | 863.33 | | | [5] |
SrSiH1.6 | orthorhombic | Pnma | | | | | [6] |
SrAlSiH | | P3m1 | | | | Al-H bond semimetal | |
SrGaSiH | trigonal | P3m1 | Z=1 | | | grey; Ga-H 1.71 semimetal | [7] |
Sr21Si2O5H21+x | cubic | Fdm | a = 19.1190 | | | | [8] |
BaSiH3.4 | orthorhombic | Pnma | | | | | |
Ba3Si4Hx (x = 1–2) | tetrahedral | I4/mcm | a ≈ 8.44, c ≈ 11.95, Z = 8 | | | Si46– in a butterfly-shape | |
Ba21Si2O5H21+x | cubic | Fdm | a = 20.336 | | | | |
BaAlSiH | | | | | | Al-H bond semimetal | |
BaGaSiH | trigonal | P3m1 | a=4.2934 c=5.186 Z=1 | 82.79 | | grey; air stable; Ga-H 1.71 semimetal | |
BaGaSiD | trigonal | P3m1 | a=4.2776 c=5.1948 Z=1 | 82.32 | | grey | |
LaFeSiH | tetragonal | P4/nmm | a=4.0270 c=8.0374 | | | | [9] |
LaFeSiH | orthorhombic | Cmme | a=5.6831 b=5.7037 c=7.9728 | | | at 15K; superconductor Tc=9.7K | [10] |
La3Pd5SiD~1.6 | orthorhombic | Imma | a=13.193 b=7.638 c=7.916 | 801.8 | | <9.5 bar | [11] |
La3Pd5SiD~2.71 | orthorhombic | Imma | a=13.102 b=7.673 c=8.168 | 821.3 | | | [12] |
La3Pd5SiD~5 | orthorhombic | Pmnb | a=13.16 b=7.91 c=8.20 | 854 | | >75 bar | [13] |
BaLaSi2D0.80 | orthorhombic | Cmcm | a = 4.6443, b = 15.267, c = 6.7630 | | | | [14] |
NdScSiH1.5 | tetrahedral | I4/mmm | a=4.221 c=16.928 Z=4 | | | | [15] |
EuSiH1.8 | orthorhombic | Pnma | | | | | |
GdMnSiH | tetragonal | P4/nmm | | | | | [16] |
GdFeSiH | tetragonal | P4/nmm | a=3.901 c=7.503 | 114.2 | | | [17] |
GdCoSiH | tetragonal | P4/nmm | a=3.879 c=7.439 | 111.9 | | | [18] |
|
Notes and References
- Book: Haussermann . U. . Kranak . V. F. . Puhakainen . K. . Fassler . T. F. . Zintl Phases: Principles and Recent Developments . 2011 . 139–161 . Hydrogenous Zintl Phases: Interstitial Versus Polyanionic Hydrides.
- Kranak . Verina F. . Benson . Daryn E. . Wollmann . Lukas . Mesgar . Milad . Shafeie . Samrand . Grins . Jekabs . Häussermann . Ulrich . Hydrogenous Zintl Phase Ba 3 Si 4 H x (x = 1–2): Transforming Si 4 "Butterfly" Anions into Tetrahedral Moieties . Inorganic Chemistry . 2 February 2015 . 54 . 3 . 756–764 . 10.1021/ic501421u. 25247666 .
- Wu. H.. Zhou. W.. Udovic. T. J.. Rush. J. J.. Yildirim. T.. 2006-12-07. Structure and hydrogen bonding in CaSiD 1 + x : Issues about covalent bonding. Physical Review B. en. 74. 22. 224101. 10.1103/PhysRevB.74.224101. 1098-0121.
- Häussermann. Ulrich. October 2008. Coexistence of hydrogen and polyanions in multinary main group element hydrides. Zeitschrift für Kristallographie. en. 223. 10. 628–635. 10.1524/zkri.2008.1016. 96199481 . 0044-2968.
- Wu. Hui. Zhou. Wei. Udovic. Terrence J.. Rush. John J.. Yildirim. Taner. July 2008. Structural variations and hydrogen storage properties of Ca5Si3 with Cr5B3-type structure. Chemical Physics Letters. en. 460. 4–6. 432–437. 10.1016/j.cplett.2008.06.018.
- Armbruster. Markus. Wörle. Michael. Krumeich. Frank. Nesper. Reinhard. October 2009. Structure and Properties of Hydrogenated Ca, Sr, Ba, and Eu Silicides. Zeitschrift für anorganische und allgemeine Chemie. en. 635. 12. 1758–1766. 10.1002/zaac.200900220.
- Evans. Michael J.. Holland. Gregory P.. Garcia-Garcia. Francisco J.. Häussermann. Ulrich. 2008-09-10. Polyanionic Gallium Hydrides from AlB 2 -Type Precursors AeGaE (Ae = Ca, Sr, Ba; E = Si, Ge, Sn). Journal of the American Chemical Society. en. 130. 36. 12139–12147. 10.1021/ja803664y. 18698774 . 0002-7863.
- Jehle. Michael. Hoffmann. Anke. Kohlmann. Holger. Scherer. Harald. Röhr. Caroline. February 2015. The 'sub' metallide oxide hydrides Sr 21 Si 2 O 5 H 12 + x and Ba 21 M 2 O 5 H 12 + x (M = Zn, Cd, Hg, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi). Journal of Alloys and Compounds. en. 623. 164–177. 10.1016/j.jallcom.2014.09.228.
- Bernardini. F.. Garbarino. G.. Sulpice. A.. Núñez-Regueiro. M.. Gaudin. E.. Chevalier. B.. Méasson. M.-A.. Cano. A.. Tencé. S.. 2018-03-12. Iron-based superconductivity extended to the novel silicide LaFeSiH. Physical Review B. en. 97. 10. 100504. 10.1103/PhysRevB.97.100504. 1701.05010 . 11584/247860 . 119004395 . 2469-9950. free.
- Bernardini. F.. Garbarino. G.. Sulpice. A.. Núñez-Regueiro. M.. Gaudin. E.. Chevalier. B.. Méasson. M.-A.. Cano. A.. Tencé. S.. 2018-03-12. Iron-based superconductivity extended to the novel silicide LaFeSiH. Physical Review B. en. 97. 10. 100504. 10.1103/PhysRevB.97.100504. 1701.05010 . 11584/247860 . 119004395 . 2469-9950. free.
- Tencé. Sophie. Mahon. Tadhg. Gaudin. Etienne. Chevalier. Bernard. Bobet. Jean-Louis. Flacau. Roxana. Heying. Birgit. Rodewald. Ute Ch.. Pöttgen. Rainer. October 2016. Hydrogenation studies on NdScSi and NdScGe. Journal of Solid State Chemistry. en. 242. 168–174. 10.1016/j.jssc.2016.02.017.
- Tencé. Sophie. Mahon. Tadhg. Gaudin. Etienne. Chevalier. Bernard. Bobet. Jean-Louis. Flacau. Roxana. Heying. Birgit. Rodewald. Ute Ch.. Pöttgen. Rainer. October 2016. Hydrogenation studies on NdScSi and NdScGe. Journal of Solid State Chemistry. en. 242. 168–174. 10.1016/j.jssc.2016.02.017.
- Tencé. Sophie. Mahon. Tadhg. Gaudin. Etienne. Chevalier. Bernard. Bobet. Jean-Louis. Flacau. Roxana. Heying. Birgit. Rodewald. Ute Ch.. Pöttgen. Rainer. October 2016. Hydrogenation studies on NdScSi and NdScGe. Journal of Solid State Chemistry. en. 242. 168–174. 10.1016/j.jssc.2016.02.017.
- Werwein. Anton. Kohlmann. Holger. 2020-07-31. Synthesis and Crystal Structure of BaLaSi 2 H 0.80. Zeitschrift für anorganische und allgemeine Chemie. en. 646. 14. 1227–1230. 10.1002/zaac.202000152. 219060294 . 0044-2313. free.
- Tencé. Sophie. Mahon. Tadhg. Gaudin. Etienne. Chevalier. Bernard. Bobet. Jean-Louis. Flacau. Roxana. Heying. Birgit. Rodewald. Ute Ch.. Pöttgen. Rainer. October 2016. Hydrogenation studies on NdScSi and NdScGe. Journal of Solid State Chemistry. en. 242. 168–174. 10.1016/j.jssc.2016.02.017.
- Ovchenkova. I. A.. Nikitin. S. A.. Tereshina. I. S.. Karpenkov. A. Yu.. Ovchenkov. Y. A.. Ćwik. J.. Koshkid’ko. Yu. S.. Drulis. H.. 2020-10-14. Hydrogen-induced extremely large change in Curie temperatures in layered GdTSiH (T = Mn, Fe, Co). Journal of Applied Physics. en. 128. 14. 143903. 10.1063/5.0020513. 225150947 . 0021-8979.
- Ovchenkova. I. A.. Nikitin. S. A.. Tereshina. I. S.. Karpenkov. A. Yu.. Ovchenkov. Y. A.. Ćwik. J.. Koshkid’ko. Yu. S.. Drulis. H.. 2020-10-14. Hydrogen-induced extremely large change in Curie temperatures in layered GdTSiH (T = Mn, Fe, Co). Journal of Applied Physics. en. 128. 14. 143903. 10.1063/5.0020513. 225150947 . 0021-8979.
- Ovchenkova. I. A.. Nikitin. S. A.. Tereshina. I. S.. Karpenkov. A. Yu.. Ovchenkov. Y. A.. Ćwik. J.. Koshkid’ko. Yu. S.. Drulis. H.. 2020-10-14. Hydrogen-induced extremely large change in Curie temperatures in layered GdTSiH (T = Mn, Fe, Co). Journal of Applied Physics. en. 128. 14. 143903. 10.1063/5.0020513. 225150947 . 0021-8979.