Silicide carbide explained

Silicide carbides or carbide silicides are compounds containing anions composed of silicide (Si4−) and carbide (C4−) or clusters therof. They can be considered as mixed anion compounds or intermetallic compounds, as silicon could be considered as a semimetal.

Related compounds include the germanide carbides, phosphide silicides, boride carbides and nitride carbides. Other related compounds may contain more condensed anion combinations such as the carbidonitridosilicates with C(SiN3)4 with N bridging between two silicon atoms.[1]

Production

Silicide carbide compounds can be made by heating silicon, graphite, and metal together. It is important to exclude oxygen before and during the reaction.[2] The flux method involves a reaction in a molten metal. Gallium is suitable, because it dissolves carbon and silicon, but does not react with them.[3]

Properties

Silicide carbides are a kind of ceramic, yet they also have metallic properties. They are not as brittle as most ceramics, but are stiffer than metals. They have high melting temperatures.

In air silicide carbide compounds are stable, and are hardly affected by water. The appearance is often metallic grey. When powdered the colour is dark grey.

When ErFe2SiC is dissolved in acid, mostly methane is produced, but the products include some hydrocarbons with two and three carbon atoms.[4]

The lanthanide contraction is evident with the cell sizes for rare earth element silicide carbides.

List

formulasystemspace groupunit cell Å, Zvolumedensitycommentref
Al4SiC4hexagonalP63mca = 3.2746 c = 21.7081 201.59band gap 2.2 eV[5]
Ti3SiC2hexagonalP63/mmca = 3.064 c = 17.65 Z=2143.54.53mp 2300°C[6]
Ti5Si3Cx[7]
Y3Si2C2orthorhombicCmmma=3.845 b=15.634 c=4.213253.3Pauli paramagneticgrey metallicair stable[8]
Y5Si3C1.8[9]
Y1.8C2Si8(B12)3rhombohedralRma=10.101, c=16.441, Z=31452.71.551
YCr2Si2CtetragonalP4/mmma=3.998 c=5.289 Z=1Pauli paramagneticgrey metallic[10]
YCr3Si2C[11]
YMn2SiCorthorhombicCmcmZ=4[12]
YFe2SiCorthorhombicCmcmZ=4270grey metallicair stable
YRu2SiCorthorhombicCmcmZ=4
Ba3Si4C2tetragonalI4/mcma = 8.7693 c = 12.3885semiconductor; contains [Si<sub>4</sub>]4− and [C<sub>2</sub>]2−[13]
La3Si2C2orthorhombicCmmma=4.039,b=16.884, and c=4.506307.3grey metallicair stable
LaCr2Si2CtetragonalP4/mmma=4.037 c=5.347 Z=1
La2Fe2Si2CmonoclinicC2/mZ=2[14]
Ce3Si2C2orthorhombicCmmma=3.990 b=16.592 c= 4.434293.5grey metallicair stable

?ferromagnetic (TC=10K

CeCr2Si2CtetragonalP4/mmma=4.020 c=5.284 Z=1grey metallic
Ce2Fe2Si2CmonoclinicC2/mZ=2
CeMo2Si2C[15]
CeRu2SiCorthorhombicCmcmZ=4
Pr3Si2C2orthorhombicCmmma=3.967 b=16.452 c=4.399287.1grey metallicair stable

ferromagnetic TC=25K

PrCr2Si2CtetragonalP4/mmma=4.022, c = 5.352 Z=186.586.00grey metallic

Si-Si pair bond 2.453 Å

PrMo2Si2CtetragonalP4/mmma=4.2139 c=5.4093 Z=196.1metallic dark grey[16]
PrRu2SiCorthorhombicCmcmZ=4
Nd3Si2C2orthorhombicCmmma=3.949 b=16.303 c=4.375281.7grey metallicair stable

ferromagnetic TC=30K

NdCr2Si2CtetragonalP4/mmma=4.026 c=5.336 Z=1grey metallic
NdRu2SiCorthorhombicCmcmZ=4
Sm3Si2C2orthorhombicCmmma=3.913 b=16.073 c=4.316271.4grey metallicair stable

antiferromagnetic TN=19K

SmCr2Si2CtetragonalP4/mmma=4.011 c=5.321 Z=1grey metallic
SmMn2SiCorthorhombicCmcmZ=4
SmFe2SiCorthorhombicCmcmZ=4278grey metallicair stable
Sm2Fe2Si2CmonoclinicC2/mZ=2
SmRu2SiCorthorhombicCmcmZ=4
Gd3Si2C2orthorhombicCmmma=3.886 b=15.863 c=4.726grey metallicair stable

antiferromagnetic TN=50K

GdCr2Si2CtetragonalP4/mmma=4.007 c=5.324 Z=1263.6grey metallic
GdCr3Si2ChexagonalP6/mmm
GdMn2SiCorthorhombicCmcmZ=4
GdFe2SiCorthorhombicCmcmZ=4273grey metallicair stable
GdRu2SiCorthorhombicCmcma = 3.830, b = 11.069, c = 7.157 Z=4303.48.745silveryair stable[17]
Tb3Si2C2orthorhombicCmmma=3.854 c=15.702 c=4.236256.3grey metallicair stable

antiferromagnetic TN=28K

Tb1.8C2Si8(B12)3rhombohedralRma=10.1171, c=16.397, Z=31453.41.583
TbCr2Si2CtetragonalP4/mmma=4.002 c=5.314 Z=1grey metallic
TbCr3Si2ChexagonalP6/mmm
TbMn2SiCorthorhombicCmcmZ=4
TbFe2SiCorthorhombicCmcmZ=4270grey metallicair stable
TbRu2SiCorthorhombicCmcmZ=4
Dy3Si2C2orthorhombicCmmma=3.838 b=15.611 c=4.203251.8grey metallicair stable

antiferromagnetic TN=30K

DyCr2Si2CtetragonalP4/mmma=3.999 c=5.306 Z=1grey metallic
DyCr3Si2ChexagonalP6/mmm
DyMn2SiCorthorhombicCmcmZ=4
Dy2Fe2Si2CmonoclinicC2/mgrey metallicair stable
DyFe2SiCorthorhombicCmcmZ=4269grey metallicair stable[18]
DyRu2SiCorthorhombicCmcmZ=4
Ho3Si2C2orthorhombicCmmma=3.828 b=15.507 c=4.189248.7grey metallicair stable

metamagnetic TN=14K

HoCr2Si2CtetragonalP4/mmma=3.996 c=5.274 Z=1grey metallic
HoCr3Si2ChexagonalP6/mmm
HoMn2SiCorthorhombicCmcmZ=4
HoFe2SiCorthorhombicCmcmZ=4267grey metallicair stable
HoRu2SiCorthorhombicCmcmZ=4
Er3Si2C2orthorhombicCmmma=3.811 b=15.420 c=4.172245.2grey metallicair stable

metamagnetic

Er1.8C2Si8(B12)3rhombohedralRma=10.0994, c=16.354, Z=31444.61.619
ErCr3Si2ChexagonalP6/mmm
ErMn2SiCorthorhombicCmcmZ=4
ErFe2SiCorthorhombicCmcmZ=4265grey metallicair stable
ErRu2SiCorthorhombicCmcmZ=4
Tm3Si2C2orthorhombicCmmma=3.796, b=15.328, c=4.145grey metallicair stable

metamagnetic

TmCr3Si2ChexagonalP6/mmm
TmMn2SiCorthorhombicCmcmZ=4
TmFe2SiCorthorhombicCmcmZ=4263grey metallicair stable
Tm2Fe2Si2CmonoclinicC2/ma = 10.497, b = 3.882, c = 6.646, β = 128.96°antiferromagnetic at TN = 2.7 K

metallic

TmRu2SiCorthorhombicCmcmZ=4
LuCr3Si2ChexagonalP6/mmm
LuMn2SiCorthorhombicCmcmZ=4
LuFe2SiCorthorhombicCmcmZ=4261grey metallicair stable
Lu2Fe2Si2CmonoclinicC2/mPauli paramagnetic

metallic

YRe2SiCorthorhombicCmcmZ=4superconductor Tc ≈ 5.9 K[19]
Y2Re2Si2CmonoclinicC2/mZ=2
La2Re2Si2CmonoclinicC2/mZ=2
CeRe2SiCorthorhombicCmcmZ=4
Ce2Re2Si2CmonoclinicC2/mZ=2
PrRe2SiCorthorhombicCmcmZ=4
NdRe2SiCorthorhombicCmcmZ=4
Nd2Re2Si2CmonoclinicC2/mZ=2
SmRe2SiCorthorhombicCmcmZ=4
Sm2Re2Si2CmonoclinicC2/mZ=2
GdRe2SiCorthorhombicCmcmZ=4
Gd2Re2Si2CmonoclinicC2/mZ=2
TbRe2SiCorthorhombicCmcmZ=4
Tb2Re2Si2CmonoclinicC2/mZ=2
DyRe2SiCorthorhombicCmcmZ=4
Dy2Re2Si2CmonoclinicC2/mZ=2
HoRe2SiCorthorhombicCmcmZ=4
Ho2Re2Si2CmonoclinicC2/mZ=2
ErRe2SiCorthorhombicCmcmZ=4
Er2Re2Si2CmonoclinicC2/mZ=2
TmRe2SiCorthorhombicCmcmZ=4
YOs2SiCorthorhombicCmcmZ=4
LaOs2SiCorthorhombicCmcmZ=4
CeOs2SiCorthorhombicCmcmZ=4
PrOs2SiCorthorhombicCmcma=3.9602,b=11.058,c=7.172 Z=4
NdOs2SiCorthorhombicCmcmZ=4
SmOs2SiCorthorhombicCmcmZ=4
GdOs2SiCorthorhombicCmcmZ=4
TbOs2SiCorthorhombicCmcmZ=4
DyOs2SiCorthorhombicCmcmZ=4
HoOs2SiCorthorhombicCmcmZ=4
ErOs2SiCorthorhombicCmcmZ=4
TmOs2SiCorthorhombicCmcmZ=4
ThCr2Si2Ctetragonal[20]
ThMn2SiCorthorhombicCmcmZ=4
ThFe2SiCorthorhombicCmcma = 3.8632, b = 10.806, c = 6.950 Z=42908.79grey metallicair stable
Th2Fe2Si2CmonoclinicC2/mZ=2
ThFe10SiC2-xtetragonala = 10.053 and c = 6.516
ThMo2Si2CtetragonalP4/mmma = 4.2296 c = 5.3571 Z=195.84superconductor Tc=2.2K[21]
ThRu2SiCorthorhombicCmcmZ=4
ThRe2SiCorthorhombicCmcmZ=4
Th2Re2Si2CmonoclinicC2/ma=11.1782, b=4.1753, c=7.0293, β=128.721° Z=2
ThOs2SiCorthorhombicCmcmZ=4
U3Si2C2tetrahedralI4/mmma=3.5735 c=18.882 Z=2241.110.94C-Si bond 1.93 ÅSpin glass freeze at 28K

grey metallic

air stable

[22]
U20Si16C3hexagonalP6/mmma= 10.377, c= 8.005, Z= 1746.511.67grey metallicair stable
UCr2Si2CtetragonalP4/mmma =3.983 c =5.160 Z=181.848.32[23]
UCr3Si2ChexagonalP6/mmm
UMn2SiCorthorhombicCmcmZ=4
UFe2SiCorthorhombicCmcmZ=4268grey metallicair stable
U2MoSi2CtetragonalP4/mbma = 6.67 c = 4.33 [24]
UOs2SiCorthorhombicCmcmZ=4

Notes and References

  1. Höppe. Henning A.. Kotzyba. Gunter. Pöttgen. Rainer. Schnick. Wolfgang. 2001-11-23. High-temperature synthesis, crystal structure, optical properties, and magnetism of the carbidonitridosilicates Ho2[Si4N6C] and Tb2[Si4N6C]]. Journal of Materials Chemistry. 11. 12. 3300–3306. 10.1039/b106533p.
  2. Pöttgen. Rainer. Kaczorowski. Dariusz. Jeitschko. Wolfgang. 1993. Crystal structure, magnetic susceptibility and electrical conductivity of the uranium silicide carbides U 3 Si 2 C 2 and U 20 Si 16 C 3. J. Mater. Chem.. en. 3. 3. 253–258. 10.1039/JM9930300253. 0959-9428.
  3. Salvador. James R.. Bilc. Daniel. Mahanti. S. D.. Kanatzidis. Mercouri G.. 2002. Gallium Flux Synthesis of Tb3−xC2Si8(B12)3: A Novel Quaternary Boron-Rich Phase Containing B12 Icosahedra. Angewandte Chemie International Edition. 41. 5. 844–846. 10.1002/1521-3773(20020301)41:5<844::AID-ANIE844>3.0.CO;2-R. 12491355. 1521-3773.
  4. Witte. Anne M.. Jeitschko. Wolfgang. October 1994. Carbides with Filled Re3B-Type Structure. Journal of Solid State Chemistry. en. 112. 2. 232–236. 10.1006/jssc.1994.1297. 1994JSSCh.112..232W.
  5. Ong . Chin Shen . Donzel-Gargand . Olivier . Berastegui . Pedro . Cedervall . Johan . Bayrak Pehlivan . Ilknur . Hervoches . Charles . Beran . Premysl . Edvinsson . Tomas . Eriksson . Olle . Jansson . Ulf . 2024-05-27 . The Crystal Structure of Al 4 SiC 4 Revisited . Inorganic Chemistry . en . 10.1021/acs.inorgchem.4c00560 . 38801717 . 0020-1669. free . 11167590 .
  6. Nowotny. V. 1971. Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn. Progress in Solid State Chemistry. en. 5. 27–70. 10.1016/0079-6786(71)90016-1.
  7. Andrievski. R A. 2017-03-31. High-melting-point compounds: new approaches and new results. Physics-Uspekhi. 60. 3. 276–289. 10.3367/UFNe.2016.09.037972. 2017PhyU...60..276A. 126026240 . 1063-7869.
  8. Gerdes. Martin H.. Witte. Anne M.. Jeitschko. Wolfgang. Lang. Arne. Künnen. Bernd. July 1998. Magnetic and Electrical Properties of a New Series of Rare Earth Silicide Carbides with the CompositionR3Si2C2(R=Y, La–Nd, Sm, Gd–Tm). Journal of Solid State Chemistry. en. 138. 2. 201–206. 10.1006/jssc.1998.7772. 1998JSSCh.138..201G.
  9. Button. T.W.. McColm. I.J.. February 1984. Reaction of carbon with lanthanide silicides IV: The Y5Si3-C system. Journal of the Less Common Metals. en. 97. 237–244. 10.1016/0022-5088(84)90028-6.
  10. Pohlkamp. Marc W.. Jeitschko. Wolfgang. 2001-11-01. Preparation, Properties, and Crystal Structure of Quaternary Silicide Carbides RCr 2 Si 2 C (R = Y, La - Nd, Sm, Gd - Ho). Zeitschrift für Naturforschung B. en. 56. 11. 1143–1148. 10.1515/znb-2001-1108. 197329371. 1865-7117.
  11. Lemoine. Pierric. Tobola. Janusz. Vernière. Anne. Malaman. Bernard. May 2013. Crystal and electronic structures of the new quaternary RCr3Si2C (R=Y, Gd–Tm, Lu, U) compounds. Journal of Solid State Chemistry. en. 201. 293–301. 10.1016/j.jssc.2013.03.004. 2013JSSCh.201..293L.
  12. Hüfken. Thomas. Witte. Anne M.. Jeitschko. Wolfgang. February 1999. Quaternary Silicide CarbidesAT2SiC (A=Rare Earth Elements and Actinoids,T=Mn, Re, Ru, Os) with DyFe2SiC-Type Structure. Journal of Solid State Chemistry. en. 142. 2. 279–287. 10.1006/jssc.1998.8012. 1999JSSCh.142..279H.
  13. Suzuki. Yuta. Morito. Haruhiko. Yamane. Hisanori. November 2009. Synthesis and crystal structure of Ba3Si4C2. Journal of Alloys and Compounds. en. 486. 1–2. 70–73. 10.1016/j.jallcom.2009.06.157.
  14. Hüfken. Thomas. Witte. Anne M. Jeitschko. Wolfgang. February 1998. Preparation and crystal structure of quaternary silicide carbides with Dy2Fe2Si2C type structure. Journal of Alloys and Compounds. en. 266. 1–2. 158–163. 10.1016/S0925-8388(97)00511-2.
  15. Paramanik. U.B.. Anupam. Burkhardt. U.. Prasad. R.. Geibel. C.. Hossain. Z.. December 2013. Valence fluctuation in CeMo2Si2C. Journal of Alloys and Compounds. en. 580. 435–441. 10.1016/j.jallcom.2013.05.169. 1303.2801. 97208932.
  16. Dashjav. E.. Schnelle. W.. Wagner. F. R.. Kreiner. G.. Kniep. R.. April 2006. Crystal structure of praseodymium dimolybdenum disilicide carbide, PrMo2Si2C. Zeitschrift für Kristallographie - New Crystal Structures. 221. 1–4. 267–268. 10.1524/ncrs.2006.221.14.267. 95607580. 2197-4578. free.
  17. Fickenscher. Thomas. Rayaprol. Sudhindra. Appen. Jörg von. Dronskowski. Richard. Pöttgen. Rainer. Łat̀ka. Kazimierz. Gurgul. Jacek. 2008-02-01. Crystal Structure, Chemical Bonding, and Magnetic Hyperfine Interactions in GdRu 2 SiC. Chemistry of Materials. en. 20. 4. 1381–1389. 10.1021/cm7020406. 0897-4756.
  18. Pöttgen. R.. Ebel. T.. Evers. C.B.H.. Jeitschko. W.. January 1995. Preparation, Structure Refinement, and Properties of Some Compounds with Dy2Fe2Si2C- and LaMn11C2-x-Type Structure. Journal of Solid State Chemistry. en. 114. 1. 66–72. 10.1006/jssc.1995.1010. 1995JSSCh.114...66P.
  19. R De Faria. L. Ferreira. P P. Correa. L E. Eleno. L T F. Torikachvili. M S. Machado. A J S. 2021-06-01. Possible multiband superconductivity in the quaternary carbide YRe 2 SiC. Superconductor Science and Technology. 34. 6. 065010. 10.1088/1361-6668/abf7cf. 2105.07496. 2021SuScT..34f5010R. 234742562. 0953-2048.
  20. Xiao . Yusen . Li . Baizhuo . Duan . Qingchen . Liu . Shaohua . Ren . Qingyong . Lin . Yiqiang . Xia . Yuanhua . Cui . YanWei . Jiang . Hao . Wei . Shuli . Ren . Zhi . Mei . Yuxue . Sun . Yuping . Fu . Shenggui . Tan . Shugang . 2023-12-28 . ThCr 2 Si 2 C: An Antiferromagnetic Metal with a Cr 2 C Square Lattice . Inorganic Chemistry . 63 . 211–218 . en . 10.1021/acs.inorgchem.3c02988 . 38153326 . 0020-1669.
  21. Liu. ZiChen. Li. BaiZhuo. Xiao. YuSen. Duan. QingChen. Cui. YanWei. Mei. YuXue. Tao. Qian. Wei. ShuLi. Tan. ShuGang. Jing. Qiang. Lu. Qing. July 2021. Superconductivity in ThMo2Si2C with Mo2C square net. Science China Physics, Mechanics & Astronomy. en. 64. 7. 277411. 10.1007/s11433-021-1698-3. 2104.09822. 2021SCPMA..6477411L. 233307337. 1674-7348.
  22. Matar. S.F.. Pöttgen. R.. October 2012. First principles investigations of the electronic structure and chemical bonding of U3Si2C2 – A uranium silicide–carbide with the rare [SiC] unit]. Chemical Physics Letters. en. 550. 88–93. 10.1016/j.cplett.2012.09.014. 2012CPL...550...88M.
  23. Lemoine. Pierric. Vernière. Anne. Pasturel. Mathieu. Venturini. Gérard. Malaman. Bernard. 2018-03-05. Unexpected Magnetic Ordering on the Cr Substructure in UCr 2 Si 2 C and Structural Relationships in Quaternary U-Cr-Si-C Compounds. Inorganic Chemistry. en. 57. 5. 2546–2557. 10.1021/acs.inorgchem.7b02901. 29431434. 0020-1669.
  24. Kovarik. Libor. Devaraj. Arun. Lavender. Curt. Joshi. Vineet. June 2019. Crystallographic and compositional analysis of impurity phase U2MoSi2C in UMo alloys. Journal of Nuclear Materials. en. 519. 287–291. 10.1016/j.jnucmat.2019.03.044. 2019JNuM..519..287K. 132410543. free.