Sequentially complete explained
In mathematics, specifically in topology and functional analysis, a subspace of a uniform space is said to be sequentially complete or semi-complete if every Cauchy sequence in converges to an element in . is called sequentially complete if it is a sequentially complete subset of itself.
Sequentially complete topological vector spaces
Every topological vector space is a uniform space so the notion of sequential completeness can be applied to them.
Properties of sequentially complete topological vector spaces
- A bounded sequentially complete disk in a Hausdorff topological vector space is a Banach disk.
- A Hausdorff locally convex space that is sequentially complete and bornological is ultrabornological.
Examples and sufficient conditions
- Every complete space is sequentially complete but not conversely.
- For metrizable spaces, sequential completeness implies completeness. Together with the previous property, this means sequential completeness and completeness are equivalent over metrizable spaces.
- Every complete topological vector space is quasi-complete and every quasi-complete topological vector space is sequentially complete.
See also