Seminorm Explained

In mathematics, particularly in functional analysis, a seminorm is a norm that need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm.

A topological vector space is locally convex if and only if its topology is induced by a family of seminorms.

Definition

Let

X

be a vector space over either the real numbers

\R

or the complex numbers

\Complex.

A real-valued function

p:X\to\R

is called a if it satisfies the following two conditions:
  1. Subadditivity/Triangle inequality:

p(x+y)\leqp(x)+p(y)

for all

x,y\inX.

  1. Absolute homogeneity:

p(sx)=|s|p(x)

for all

x\inX

and all scalars

s.

These two conditions imply that

p(0)=0

[1] and that every seminorm

p

also has the following property:[2]
  1. Nonnegativity:

    p(x)\geq0

    for all

    x\inX.

Some authors include non-negativity as part of the definition of "seminorm" (and also sometimes of "norm"), although this is not necessary since it follows from the other two properties.

By definition, a norm on

X

is a seminorm that also separates points, meaning that it has the following additional property:
  1. Positive definite/Positive/: whenever

    x\inX

    satisfies

    p(x)=0,

    then

    x=0.

A is a pair

(X,p)

consisting of a vector space

X

and a seminorm

p

on

X.

If the seminorm

p

is also a norm then the seminormed space

(X,p)

is called a .

Since absolute homogeneity implies positive homogeneity, every seminorm is a type of function called a sublinear function. A map

p:X\to\R

is called a if it is subadditive and positive homogeneous. Unlike a seminorm, a sublinear function is necessarily nonnegative. Sublinear functions are often encountered in the context of the Hahn–Banach theorem. A real-valued function

p:X\to\R

is a seminorm if and only if it is a sublinear and balanced function.

Examples

Minkowski functionals and seminorms

See main article: Minkowski functional.

Seminorms on a vector space

X

are intimately tied, via Minkowski functionals, to subsets of

X

that are convex, balanced, and absorbing. Given such a subset

D

of

X,

the Minkowski functional of

D

is a seminorm. Conversely, given a seminorm

p

on

X,

the sets

\{x\inX:p(x)<1\}

and

\{x\inX:p(x)\leq1\}

are convex, balanced, and absorbing and furthermore, the Minkowski functional of these two sets (as well as of any set lying "in between them") is

p.

Algebraic properties

Every seminorm is a sublinear function, and thus satisfies all properties of a sublinear function, including convexity,

p(0)=0,

and for all vectors

x,y\inX

:the reverse triangle inequality: |p(x) - p(y)| \leq p(x - y)and also0 \leq \max \ and

p(x)-p(y)\leqp(x-y).

For any vector

x\inX

and positive real

r>0:

x + \ = \and furthermore,

\{x\inX:p(x)<r\}

is an absorbing disk in

X.

If

p

is a sublinear function on a real vector space

X

then there exists a linear functional

f

on

X

such that

f\leqp

and furthermore, for any linear functional

g

on

X,

g\leqp

on

X

if and only if

g-1(1)\cap\{x\inX:p(x)<1\}=\varnothing.

Other properties of seminorms

Every seminorm is a balanced function. A seminorm

p

is a norm on

X

if and only if

\{x\inX:p(x)<1\}

does not contain a non-trivial vector subspace.

If

p:X\to[0,infty)

is a seminorm on

X

then

\kerp:=p-1(0)

is a vector subspace of

X

and for every

x\inX,

p

is constant on the set

x+\kerp=\{x+k:p(k)=0\}

and equal to

p(x).

[3]

Furthermore, for any real

r>0,

r \ = \ = \left\.

If

D

is a set satisfying

\{x\inX:p(x)<1\}\subseteqD\subseteq\{x\inX:p(x)\leq1\}

then

D

is absorbing in

X

and

p=pD

where

pD

denotes the Minkowski functional associated with

D

(that is, the gauge of

D

). In particular, if

D

is as above and

q

is any seminorm on

X,

then

q=p

if and only if

\{x\inX:q(x)<1\}\subseteqD\subseteq\{x\inX:q(x)\leq\}.

If

(X,\|\|)

is a normed space and

x,y\inX

then

\|x-y\|=\|x-z\|+\|z-y\|

for all

z

in the interval

[x,y].

Every norm is a convex function and consequently, finding a global maximum of a norm-based objective function is sometimes tractable.

Relationship to other norm-like concepts

Let

p:X\to\R

be a non-negative function. The following are equivalent:
  1. p

    is a seminorm.
  2. p

    is a convex

    F

    -seminorm.
  3. p

    is a convex balanced G-seminorm.

If any of the above conditions hold, then the following are equivalent:

  1. p

    is a norm;
  2. \{x\inX:p(x)<1\}

    does not contain a non-trivial vector subspace.
  3. There exists a norm on

    X,

    with respect to which,

    \{x\inX:p(x)<1\}

    is bounded.

If

p

is a sublinear function on a real vector space

X

then the following are equivalent:
  1. p

    is a linear functional;
  2. p(x)+p(-x)\leq0foreveryx\inX

    ;
  3. p(x)+p(-x)=0foreveryx\inX

    ;

Inequalities involving seminorms

If

p,q:X\to[0,infty)

are seminorms on

X

then:

If

p

is a seminorm on

X

and

f

is a linear functional on

X

then:

Hahn–Banach theorem for seminorms

Seminorms offer a particularly clean formulation of the Hahn–Banach theorem:

If

M

is a vector subspace of a seminormed space

(X,p)

and if

f

is a continuous linear functional on

M,

then

f

may be extended to a continuous linear functional

F

on

X

that has the same norm as

f.

A similar extension property also holds for seminorms:

Proof: Let

S

be the convex hull of

\{m\inM:p(m)\leq1\}\cup\{x\inX:q(x)\leq1\}.

Then

S

is an absorbing disk in

X

and so the Minkowski functional

P

of

S

is a seminorm on

X.

This seminorm satisfies

p=P

on

M

and

P\leqq

on

X.

\blacksquare

Topologies of seminormed spaces

Pseudometrics and the induced topology

A seminorm

p

on

X

induces a topology, called the, via the canonical translation-invariant pseudometric

dp:X x X\to\R

;

dp(x,y):=p(x-y)=p(y-x).

This topology is Hausdorff if and only if

dp

is a metric, which occurs if and only if

p

is a norm. This topology makes

X

into a locally convex pseudometrizable topological vector space that has a bounded neighborhood of the origin and a neighborhood basis at the origin consisting of the following open balls (or the closed balls) centered at the origin:\ \quad \text \quad \as

r>0

ranges over the positive reals. Every seminormed space

(X,p)

should be assumed to be endowed with this topology unless indicated otherwise. A topological vector space whose topology is induced by some seminorm is called .

Equivalently, every vector space

X

with seminorm

p

induces a vector space quotient

X/W,

where

W

is the subspace of

X

consisting of all vectors

x\inX

with

p(x)=0.

Then

X/W

carries a norm defined by

p(x+W)=p(x).

The resulting topology, pulled back to

X,

is precisely the topology induced by

p.

Any seminorm-induced topology makes

X

locally convex, as follows. If

p

is a seminorm on

X

and

r\in\R,

call the set

\{x\inX:p(x)<r\}

the ; likewise the closed ball of radius

r

is

\{x\inX:p(x)\leqr\}.

The set of all open (resp. closed)

p

-balls at the origin forms a neighborhood basis of convex balanced sets that are open (resp. closed) in the

p

-topology on

X.

Stronger, weaker, and equivalent seminorms

The notions of stronger and weaker seminorms are akin to the notions of stronger and weaker norms. If

p

and

q

are seminorms on

X,

then we say that

q

is than

p

and that

p

is than

q

if any of the following equivalent conditions holds:
  1. The topology on

X

induced by

q

is finer than the topology induced by

p.

  1. If

x\bull=\left(xi\right)

infty
i=1
is a sequence in

X,

then

q\left(x\bull\right):=\left(q\left(xi\right)\right)

infty
i=1

\to0

in

\R

implies

p\left(x\bull\right)\to0

in

\R.

  1. If

x\bull=\left(xi\right)i

is a net in

X,

then

q\left(x\bull\right):=\left(q\left(xi\right)\right)i\to0

in

\R

implies

p\left(x\bull\right)\to0

in

\R.

p

is bounded on

\{x\inX:q(x)<1\}.

  1. If

inf{}\{q(x):p(x)=1,x\inX\}=0

then

p(x)=0

for all

x\inX.

  1. There exists a real

K>0

such that

p\leqKq

on

X.

The seminorms

p

and

q

are called if they are both weaker (or both stronger) than each other. This happens if they satisfy any of the following conditions:
  1. The topology on

    X

    induced by

    q

    is the same as the topology induced by

    p.

  2. q

    is stronger than

    p

    and

    p

    is stronger than

    q.

  3. If

    x\bull=\left(xi\right)

    infty
    i=1
    is a sequence in

    X

    then

    q\left(x\bull\right):=\left(q\left(xi\right)\right)

    infty
    i=1

    \to0

    if and only if

    p\left(x\bull\right)\to0.

  4. There exist positive real numbers

    r>0

    and

    R>0

    such that

    rq\leqp\leqRq.

Normability and seminormability

See also: Normed space.

A topological vector space (TVS) is said to be a (respectively, a) if its topology is induced by a single seminorm (resp. a single norm). A TVS is normable if and only if it is seminormable and Hausdorff or equivalently, if and only if it is seminormable and T1 (because a TVS is Hausdorff if and only if it is a T1 space). A is a topological vector space that possesses a bounded neighborhood of the origin.

Normability of topological vector spaces is characterized by Kolmogorov's normability criterion. A TVS is seminormable if and only if it has a convex bounded neighborhood of the origin. Thus a locally convex TVS is seminormable if and only if it has a non-empty bounded open set.A TVS is normable if and only if it is a T1 space and admits a bounded convex neighborhood of the origin.

If

X

is a Hausdorff locally convex TVS then the following are equivalent:
  1. X

    is normable.
  2. X

    is seminormable.
  3. X

    has a bounded neighborhood of the origin.
  4. The strong dual
    \prime
    X
    b
    of

    X

    is normable.
  5. The strong dual
    \prime
    X
    b
    of

    X

    is metrizable.
Furthermore,

X

is finite dimensional if and only if
\prime
X
\sigma
is normable (here
\prime
X
\sigma
denotes

X\prime

endowed with the weak-* topology).

The product of infinitely many seminormable space is again seminormable if and only if all but finitely many of these spaces trivial (that is, 0-dimensional).

Topological properties

Continuity of seminorms

If

p

is a seminorm on a topological vector space

X,

then the following are equivalent:
  1. p

    is continuous.
  2. p

    is continuous at 0;
  3. \{x\inX:p(x)<1\}

    is open in

    X

    ;
  4. \{x\inX:p(x)\leq1\}

    is closed neighborhood of 0 in

    X

    ;
  5. p

    is uniformly continuous on

    X

    ;
  6. There exists a continuous seminorm

    q

    on

    X

    such that

    p\leqq.

In particular, if

(X,p)

is a seminormed space then a seminorm

q

on

X

is continuous if and only if

q

is dominated by a positive scalar multiple of

p.

If

X

is a real TVS,

f

is a linear functional on

X,

and

p

is a continuous seminorm (or more generally, a sublinear function) on

X,

then

f\leqp

on

X

implies that

f

is continuous.

Continuity of linear maps

If

F:(X,p)\to(Y,q)

is a map between seminormed spaces then let\|F\|_ := \sup \.

If

F:(X,p)\to(Y,q)

is a linear map between seminormed spaces then the following are equivalent:
  1. F

    is continuous;
  2. \|F\|p,q<infty

    ;
  3. There exists a real

    K\geq0

    such that

    p\leqKq

    ;
    • In this case,

    \|F\|p,q\leqK.

If

F

is continuous then

q(F(x))\leq\|F\|p,qp(x)

for all

x\inX.

The space of all continuous linear maps

F:(X,p)\to(Y,q)

between seminormed spaces is itself a seminormed space under the seminorm

\|F\|p,q.

This seminorm is a norm if

q

is a norm.

Generalizations

The concept of in composition algebras does share the usual properties of a norm.

A composition algebra

(A,*,N)

consists of an algebra over a field

A,

an involution

*,

and a quadratic form

N,

which is called the "norm". In several cases

N

is an isotropic quadratic form so that

A

has at least one null vector, contrary to the separation of points required for the usual norm discussed in this article.

An or a is a seminorm

p:X\to\R

that also satisfies

p(x+y)\leqmax\{p(x),p(y)\}forallx,y\inX.

Weakening subadditivity: Quasi-seminorms

A map

p:X\to\R

is called a if it is (absolutely) homogeneous and there exists some

b\leq1

such that

p(x+y)\leqbp(p(x)+p(y))forallx,y\inX.

The smallest value of

b

for which this holds is called the

A quasi-seminorm that separates points is called a on

X.

Weakening homogeneity -

k

-seminorms

A map

p:X\to\R

is called a if it is subadditive and there exists a

k

such that

0<k\leq1

and for all

x\inX

and scalars

s,

p(s x) = |s|^k p(x) A

k

-seminorm that separates points is called a on

X.

We have the following relationship between quasi-seminorms and

k

-seminorms:

Notes

Proofs

References

External links

Notes and References

  1. If

    z\inX

    denotes the zero vector in

    X

    while

    0

    denote the zero scalar, then absolute homogeneity implies that

    p(0)=p(0z)=|0|p(z)=0p(z)=0.

    \blacksquare

  2. Suppose

    p:X\to\R

    is a seminorm and let

    x\inX.

    Then absolute homogeneity implies

    p(-x)=p((-1)x)=|-1|p(x)=p(x).

    The triangle inequality now implies

    p(0)=p(x+(-x))\leqp(x)+p(-x)=p(x)+p(x)=2p(x).

    Because

    x

    was an arbitrary vector in

    X,

    it follows that

    p(0)\leq2p(0),

    which implies that

    0\leqp(0)

    (by subtracting

    p(0)

    from both sides). Thus

    0\leqp(0)\leq2p(x)

    which implies

    0\leqp(x)

    (by multiplying thru by

    1/2

    ).
  3. Let

    x\inX

    and

    k\inp-1(0).

    It remains to show that

    p(x+k)=p(x).

    The triangle inequality implies

    p(x+k)\leqp(x)+p(k)=p(x)+0=p(x).

    Since

    p(-k)=0,

    p(x)=p(x)-p(-k)\leqp(x-(-k))=p(x+k),

    as desired.

    \blacksquare

  4. Obvious if

    X

    is a real vector space. For the non-trivial direction, assume that

    \operatorname{Re}f\leqp

    on

    X

    and let

    x\inX.

    Let

    r\geq0

    and

    t

    be real numbers such that

    f(x)=rei.

    Then

    |f(x)|=r=f\left(e-itx\right)=\operatorname{Re}\left(f\left(e-itx\right)\right)\leqp\left(e-itx\right)=p(x).