In mathematics, particularly in functional analysis, a seminorm is a norm that need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm.
A topological vector space is locally convex if and only if its topology is induced by a family of seminorms.
Let
X
\R
\Complex.
p:X\to\R
p(x+y)\leqp(x)+p(y)
x,y\inX.
p(sx)=|s|p(x)
x\inX
s.
These two conditions imply that
p(0)=0
p
p(x)\geq0
x\inX.
Some authors include non-negativity as part of the definition of "seminorm" (and also sometimes of "norm"), although this is not necessary since it follows from the other two properties.
By definition, a norm on
X
x\inX
p(x)=0,
x=0.
A is a pair
(X,p)
X
p
X.
p
(X,p)
Since absolute homogeneity implies positive homogeneity, every seminorm is a type of function called a sublinear function. A map
p:X\to\R
p:X\to\R
X,
0
X,
X.
\mu
\Omega
c\geq1
X
f:\Omega → R
X
\lVert ⋅ \rVertc
X
\Omega=R
\mu
\lVerth\rVertc=0
h=0
\lVert ⋅ \rVertc
X
h
\lVerth\rVertc=0
Lc(\mu)
\lVert ⋅ \rVertc
f
|f|,
x\mapsto|f(x)|,
f:X\to\R
X
f(-x)=f(x)
x\inX.
f:X\to\R
X
p:X\to\R
p(x):=max\{f(x),f(-x)\}.
p:X\to\R
q:Y\to\R
X
Y
r:X x Y\to\R
r(x,y)=p(x)+q(y)
X x Y.
X x Y
(x,y)\mapstop(x)
(x,y)\mapstoq(y)
X x Y.
p
q
X
p\wedgeq\leqp
p\wedgeq\leqq.
X
\R2
p(x,y):=max(|x|,|y|),q(x,y):=2|x|,r(x,y):=2|y|
(p\veeq\wedger)(x,y):=max(|x|,|y|)
L:X\toY
q:Y\to\R
Y,
q\circL:X\to\R
X.
q\circL
X
L
q\vertL(X)
L(X).
See main article: Minkowski functional.
Seminorms on a vector space
X
X
D
X,
D
p
X,
\{x\inX:p(x)<1\}
\{x\inX:p(x)\leq1\}
p.
Every seminorm is a sublinear function, and thus satisfies all properties of a sublinear function, including convexity,
p(0)=0,
x,y\inX
p(x)-p(y)\leqp(x-y).
For any vector
x\inX
r>0:
\{x\inX:p(x)<r\}
X.
If
p
X
f
X
f\leqp
g
X,
g\leqp
X
g-1(1)\cap\{x\inX:p(x)<1\}=\varnothing.
Other properties of seminorms
Every seminorm is a balanced function. A seminorm
p
X
\{x\inX:p(x)<1\}
If
p:X\to[0,infty)
X
\kerp:=p-1(0)
X
x\inX,
p
x+\kerp=\{x+k:p(k)=0\}
p(x).
Furthermore, for any real
r>0,
If
D
\{x\inX:p(x)<1\}\subseteqD\subseteq\{x\inX:p(x)\leq1\}
D
X
p=pD
pD
D
D
D
q
X,
q=p
\{x\inX:q(x)<1\}\subseteqD\subseteq\{x\inX:q(x)\leq\}.
If
(X,\| ⋅ \|)
x,y\inX
\|x-y\|=\|x-z\|+\|z-y\|
z
[x,y].
Every norm is a convex function and consequently, finding a global maximum of a norm-based objective function is sometimes tractable.
Let
p:X\to\R
p
p
F
p
If any of the above conditions hold, then the following are equivalent:
p
\{x\inX:p(x)<1\}
X,
\{x\inX:p(x)<1\}
If
p
X
p
p(x)+p(-x)\leq0foreveryx\inX
p(x)+p(-x)=0foreveryx\inX
If
p,q:X\to[0,infty)
X
p\leqq
q(x)\leq1
p(x)\leq1.
a>0
b>0
p(x)<a
q(x)\leqb,
aq(x)\leqbp(x)
x\inX.
a
b
q,p1,\ldots,pn
X
x\inX,
max\{p1(x),\ldots,pn(x)\}<a
q(x)<b.
aq\leqb\left(p1+ … +pn\right).
X
f
X,
f\leqp
\varnothing=f-1(1)\cap\{x\inX:p(x)<1\}.
If
p
X
f
X
|f|\leqp
X
\operatorname{Re}f\leqp
X
f\leqp
X
f-1(1)\cap\{x\inX:p(x)<1=\varnothing\}.
a>0
b>0
p(x)<a
f(x) ≠ b,
a|f(x)|\leqbp(x)
x\inX.
Seminorms offer a particularly clean formulation of the Hahn–Banach theorem:
If
M
(X,p)
f
M,
f
F
X
f.
A similar extension property also holds for seminorms:
Proof: Let
S
\{m\inM:p(m)\leq1\}\cup\{x\inX:q(x)\leq1\}.
S
X
P
S
X.
p=P
M
P\leqq
X.
\blacksquare
A seminorm
p
X
dp:X x X\to\R
dp(x,y):=p(x-y)=p(y-x).
dp
p
X
r>0
(X,p)
Equivalently, every vector space
X
p
X/W,
W
X
x\inX
p(x)=0.
X/W
p(x+W)=p(x).
X,
p.
Any seminorm-induced topology makes
X
p
X
r\in\R,
\{x\inX:p(x)<r\}
r
\{x\inX:p(x)\leqr\}.
p
p
X.
The notions of stronger and weaker seminorms are akin to the notions of stronger and weaker norms. If
p
q
X,
q
p
p
q
X
q
p.
x\bull=\left(xi\right)
infty | |
i=1 |
X,
q\left(x\bull\right):=\left(q\left(xi\right)\right)
infty | |
i=1 |
\to0
\R
p\left(x\bull\right)\to0
\R.
x\bull=\left(xi\right)i
X,
q\left(x\bull\right):=\left(q\left(xi\right)\right)i\to0
\R
p\left(x\bull\right)\to0
\R.
p
\{x\inX:q(x)<1\}.
inf{}\{q(x):p(x)=1,x\inX\}=0
p(x)=0
x\inX.
K>0
p\leqKq
X.
The seminorms
p
q
X
q
p.
q
p
p
q.
x\bull=\left(xi\right)
infty | |
i=1 |
X
q\left(x\bull\right):=\left(q\left(xi\right)\right)
infty | |
i=1 |
\to0
p\left(x\bull\right)\to0.
r>0
R>0
rq\leqp\leqRq.
See also: Normed space.
A topological vector space (TVS) is said to be a (respectively, a) if its topology is induced by a single seminorm (resp. a single norm). A TVS is normable if and only if it is seminormable and Hausdorff or equivalently, if and only if it is seminormable and T1 (because a TVS is Hausdorff if and only if it is a T1 space). A is a topological vector space that possesses a bounded neighborhood of the origin.
Normability of topological vector spaces is characterized by Kolmogorov's normability criterion. A TVS is seminormable if and only if it has a convex bounded neighborhood of the origin. Thus a locally convex TVS is seminormable if and only if it has a non-empty bounded open set.A TVS is normable if and only if it is a T1 space and admits a bounded convex neighborhood of the origin.
If
X
X
X
X
\prime | |
X | |
b |
X
\prime | |
X | |
b |
X
X
\prime | |
X | |
\sigma |
\prime | |
X | |
\sigma |
X\prime
The product of infinitely many seminormable space is again seminormable if and only if all but finitely many of these spaces trivial (that is, 0-dimensional).
X
p
X,
\{x\inX:p(x)<r\}
X
\{x\inX:p(x)\leqr\}.
\{0\}
X
l{P}
capp
S
(X,p)
p(S)
(X,p)
p
X
X
d(x,y):=p(x-y)
x,y\inX.
If
p
X,
p
p
\{x\inX:p(x)<1\}
X
\{x\inX:p(x)\leq1\}
X
p
X
q
X
p\leqq.
In particular, if
(X,p)
q
X
q
p.
If
X
f
X,
p
X,
f\leqp
X
f
If
F:(X,p)\to(Y,q)
If
F:(X,p)\to(Y,q)
F
\|F\|p,q<infty
K\geq0
p\leqKq
\|F\|p,q\leqK.
F
q(F(x))\leq\|F\|p,qp(x)
x\inX.
The space of all continuous linear maps
F:(X,p)\to(Y,q)
\|F\|p,q.
q
The concept of in composition algebras does share the usual properties of a norm.
A composition algebra
(A,*,N)
A,
*,
N,
N
A
An or a is a seminorm
p:X\to\R
p(x+y)\leqmax\{p(x),p(y)\}forallx,y\inX.
Weakening subadditivity: Quasi-seminorms
A map
p:X\to\R
b\leq1
p(x+y)\leqbp(p(x)+p(y))forallx,y\inX.
b
A quasi-seminorm that separates points is called a on
X.
Weakening homogeneity -
k
A map
p:X\to\R
k
0<k\leq1
x\inX
s,
k
X.
We have the following relationship between quasi-seminorms and
k
Proofs
z\inX
X
0
p(0)=p(0z)=|0|p(z)=0p(z)=0.
\blacksquare
p:X\to\R
x\inX.
p(-x)=p((-1)x)=|-1|p(x)=p(x).
p(0)=p(x+(-x))\leqp(x)+p(-x)=p(x)+p(x)=2p(x).
x
X,
p(0)\leq2p(0),
0\leqp(0)
p(0)
0\leqp(0)\leq2p(x)
0\leqp(x)
1/2
x\inX
k\inp-1(0).
p(x+k)=p(x).
p(x+k)\leqp(x)+p(k)=p(x)+0=p(x).
p(-k)=0,
p(x)=p(x)-p(-k)\leqp(x-(-k))=p(x+k),
\blacksquare
X
\operatorname{Re}f\leqp
X
x\inX.
r\geq0
t
f(x)=rei.
|f(x)|=r=f\left(e-itx\right)=\operatorname{Re}\left(f\left(e-itx\right)\right)\leqp\left(e-itx\right)=p(x).