Sea level rise explained
Between 1901 and 2018, the average sea level rose by, with an increase of 2.3mm per year since the 1970s. This was faster than the sea level had ever risen over at least the past 3,000 years. The rate accelerated to 4.62mm/yr for the decade 2013–2022. Climate change due to human activities is the main cause. Between 1993 and 2018, melting ice sheets and glaciers accounted for 44% of sea level rise, with another 42% resulting from thermal expansion of water.[1]
Sea level rise lags behind changes in the Earth's temperature by many decades, and sea level rise will therefore continue to accelerate between now and 2050 in response to warming that has already happened.[2] What happens after that depends on human greenhouse gas emissions. If there are very deep cuts in emissions, sea level rise would slow between 2050 and 2100. It could then reach by 2100 slightly over from now and approximately from the 19th century. With high emissions it would instead accelerate further, and could rise by or even by 2100. In the long run, sea level rise would amount to NaN0NaN0 over the next 2000 years if warming stays to its current 1.5C-change over the pre-industrial past. It would be NaNm (-2,147,483,648feet) if warming peaks at 5C-change.[3]
Rising seas affect every coastal and island population on Earth.[4] This can be through flooding, higher storm surges, king tides, and tsunamis. There are many knock-on effects. They lead to loss of coastal ecosystems like mangroves. Crop yields may reduce because of increasing salt levels in irrigation water. Damage to ports disrupts sea trade. The sea level rise projected by 2050 will expose places currently inhabited by tens of millions of people to annual flooding. Without a sharp reduction in greenhouse gas emissions, this may increase to hundreds of millions in the latter decades of the century.
Local factors like tidal range or land subsidence will greatly affect the severity of impacts. For instance, sea level rise in the United States is likely to be two to three times greater than the global average by the end of the century.[5] [6] Yet, of the 20 countries with the greatest exposure to sea level rise, twelve are in Asia, including Indonesia, Bangladesh and the Philippines. The resilience and adaptive capacity of ecosystems and countries also varies, which will result in more or less pronounced impacts.[7] The greatest impact on human populations in the near term will occur in the low-lying Caribbean and Pacific islands. Sea level rise will make many of them uninhabitable later this century.[8]
Societies can adapt to sea level rise in multiple ways. Managed retreat, accommodating coastal change, or protecting against sea level rise through hard-construction practices like seawalls[9] are hard approaches. There are also soft approaches such as dune rehabilitation and beach nourishment. Sometimes these adaptation strategies go hand in hand. At other times choices must be made among different strategies.[10] Poorer nations may also struggle to implement the same approaches to adapt to sea level rise as richer states.
Observations
Between 1901 and 2018, the global mean sea level rose by about 20cm (10inches). More precise data gathered from satellite radar measurements found an increase of 7.5cm (03inches) from 1993 to 2017 (average of 2.9mm/yr). This accelerated to 4.62mm/yr for 2013–2022.[11] Paleoclimate data shows that this rate of sea level rise is the fastest it had been over at least the past 3,000 years.
Sea level rise is not uniform around the globe. Some land masses are moving up or down as a consequence of subsidence (land sinking or settling) or post-glacial rebound (land rising as melting ice reduces weight). Therefore, local relative sea level rise may be higher or lower than the global average. Changing ice masses also affect the distribution of sea water around the globe through gravity.[12] [13]
Projections
Approaches used for projections
Several approaches are used for sea level rise (SLR) projections. One is process-based modeling, where ice melting is computed through an ice-sheet model and rising sea temperature and expansion through a general circulation model, and then these contributions are added up.[14] The so-called semi-empirical approach instead applies statistical techniques and basic physical modeling to the observed sea level rise and its reconstructions from the historical geological data (known as paleoclimate modelling). It was developed because process-based model projections in the past IPCC reports (such as the Fourth Assessment Report from 2007) were found to underestimate the already observed sea level rise.
By 2013, improvements in modelling had addressed this issue, and model and semi-empirical projections for the year 2100 are now very similar. Yet, semi-empirical estimates are reliant on the quality of available observations and struggle to represent non-linearities, while processes without enough available information about them cannot be modelled. Thus, another approach is to combine the opinions of a large number of scientists in what is known as a structured expert judgement (SEJ).
Variations of these primary approaches exist. For instance, large climate models are always in demand, so less complex models are often used in their place for simpler tasks like projecting flood risk in the specific regions. A structured expert judgement may be used in combination with modelling to determine which outcomes are more or less likely, which is known as "shifted SEJ". Semi-empirical techniques can be combined with the so-called "intermediate-complexity" models. After 2016, some ice sheet modelling exhibited the so-called ice cliff instability in Antarctica, which results in substantially faster disintegration and retreat than otherwise simulated.[15] [16] The differences are limited with low warming, but at higher warming levels, ice cliff instability predicts far greater sea level rise than any other approach.[17]
Projections for the 21st century
Intergovernmental Panel on Climate Change is the largest and most influential scientific organization on climate change, and since 1990, it provides several plausible scenarios of 21st century sea level rise in each of its major reports. The differences between scenarios are mainly due to uncertainty about future greenhouse gas emissions. These depend on future economic developments, and also future political action which is hard to predict. Each scenario provides an estimate for sea level rise as a range with a lower and upper limit to reflect the unknowns. The scenarios in the 2013–2014 Fifth Assessment Report (AR5) were called Representative Concentration Pathways, or RCPs and the scenarios in the IPCC Sixth Assessment Report (AR6) are known as Shared Socioeconomic Pathways, or SSPs. A large difference between the two was the addition of SSP1-1.9 to AR6, which represents meeting the best Paris climate agreement goal of 1.5C-change. In that case, the likely range of sea level rise by 2100 is .The lowest scenario in AR5, RCP2.6, would see greenhouse gas emissions low enough to meet the goal of limiting warming by 2100 to 2C-change. It shows sea level rise in 2100 of about 44cm (17inches) with a range of 28cm-61cmcm (11inches-24inchescm). The "moderate" scenario, where emissions take a decade or two to peak and its atmospheric concentration does not plateau until the 2070s is called RCP 4.5. Its likely range of sea level rise is . The highest scenario in RCP8.5 pathway sea level would rise between .[18] AR6 had equivalents for both scenarios, but it estimated larger sea level rise under both. In AR6, the SSP1-2.6 pathway results in a range of by 2100. The "moderate" SSP2-4.5 results in a range by 2100 and SSP5-8.5 led to .
This general increase of projections in AR6 came after the improvements in ice-sheet modelling and the incorporation of structured expert judgements. These decisions came as the observed ice-sheet erosion in Greenland and Antarctica had matched the upper-end range of the AR5 projections by 2020,[19] [20] and the finding that AR5 projections were likely too slow next to an extrapolation of observed sea level rise trends, while the subsequent reports had improved in this regard.[21] Further, AR5 was criticized by multiple researchers for excluding detailed estimates the impact of "low-confidence" processes like marine ice sheet and marine ice cliff instability,[22] which can substantially accelerate ice loss to potentially add "tens of centimeters" to sea level rise within this century. AR6 includes a version of SSP5-8.5 where these processes take place, and in that case, sea level rise of up to by 2100 could not be ruled out.[23]
Role of instability processes
The greatest uncertainty with sea level rise projections is associated with the so-called marine ice sheet instability (MISI), and, even more so, Marine Ice Cliff Instability (MICI). These processes are mainly associated with West Antarctic Ice Sheet, but may also apply to some of Greenland's glaciers. The former suggests that when glaciers are mostly underwater on retrograde (backwards-sloping) bedrock, the water melts more and more of their height as their retreat continues, thus accelerating their breakdown on its own. This is widely accepted, but is difficult to model.
The latter posits that coastal ice cliffs which exceed ~ in above-ground height and are ~ in basal (underground) height are likely to rapidly collapse under their own weight once the ice shelves propping them up are gone. The collapse then exposes the ice masses following them to the same instability, potentially resulting in a self-sustaining cycle of cliff collapse and rapid ice sheet retreat.[24] [25] This theory had been highly influential - in a 2020 survey of 106 experts, the 2016 paper which suggested or more of sea level rise by 2100 from Antarctica alone,[15] was considered even more important than the 2014 IPCC Fifth Assessment Report.[26] Even more rapid sea level rise was proposed in a 2016 study led by Jim Hansen, which hypothesized multi-meter sea level rise in 50-100 years as a plausible outcome of high emissions, but it remains a minority view amongst the scientific community.[27] Marine ice cliff instability had also been very controversial, since it was proposed as a modelling exercise,[28] and the observational evidence from both the past and the present is very limited and ambiguous. So far, only one episode of seabed gouging by ice from the Younger Dryas period appears truly consistent with this theory, but it had lasted for an estimated 900 years,[29] so it is unclear if it supports rapid sea level rise in the present. Modelling which investigated the hypothesis after 2016 often suggested that the ice shelves in the real world may collapse too slowly to make this scenario relevant,[30] or that ice mélange - debris produced as the glacier breaks down - would quickly build up in front of the glacier and significantly slow or even outright stop the instability soon after it began.[31] [32] [33] [34]
Due to these uncertainties, some scientists - including the originators of the hypothesis, Robert DeConto and David Pollard - have suggested that the best way to resolve the question would be to precisely determine sea level rise during the Last Interglacial. MICI can be effectively ruled out if SLR at the time was lower than, while it is very likely if the SLR was greater than .[35] As of 2023, the most recent analysis indicates that the Last Interglacial SLR is unlikely to have been higher than, as higher values in other research, such as,[36] appear inconsistent with the new paleoclimate data from The Bahamas and the known history of the Greenland Ice Sheet.[37]
Post-2100 sea level rise
Even if the temperature stabilizes, significant sea-level rise (SLR) will continue for centuries,[38] consistent with paleo records of sea level rise. This is due to the high level of inertia in the carbon cycle and the climate system, owing to factors such as the slow diffusion of heat into the deep ocean, leading to a longer climate response time.[39] A 2018 paper estimated that sea level rise in 2300 would increase by a median of 20 cm (8 in) for every five years emissions increase before peaking. It shows a 5% likelihood of a increase due to the same. The same estimate found that if the temperature stabilized below 2C-change, 2300 sea level rise would still exceed . Early net zero and slowly falling temperatures could limit it to .[40]
By 2021, the IPCC Sixth Assessment Report was able to provide estimates for sea level rise in 2150. Keeping warming to 1.5°C under the SSP1-1.9 scenario would result in sea level rise in the 17–83% range of . In the SSP1-2.6 pathway the range would be, for SSP2-4.5 a range by 2100 and for SSP5-8.5 a rise of . It stated that the "low-confidence, high impact" projected mean sea level rise by 2100, and that by 2150, the total sea level rise in his scenario would be in the range of by 2150. AR6 also provided lower-confidence estimates for year 2300 sea level rise under SSP1-2.6 and SSP5-8.5 with various impact assumptions. In the best case scenario, under SSP1-2.6 with no ice sheet acceleration after 2100, the estimate was only NaNm (-2,147,483,648feet). In the worst estimated scenario, SSP-8.5 with ice cliff instability, the projected range for total sea level rise was NaNm (-2,147,483,648feet) by the year 2300.
Projections for subsequent years are more difficult. In 2019, when 22 experts on ice sheets were asked to estimate 2200 and 2300 SLR under the 5°C warming scenario, there were 90% confidence intervals of − to and − to, respectively. (Negative values represent the extremely low probability of large climate change-induced increases in precipitation greatly elevating ice sheet surface mass balance.)[41] In 2020, 106 experts who contributed to 6 or more papers on sea level estimated median SLR in the year 2300 for the low-warming RCP2.6 scenario and the median of for the high-warming RCP8.5. The former scenario had the 5%–95% confidence range of, and the latter of .
After 500 years, sea level rise from thermal expansion alone may have reached only half of its eventual level - likely within ranges of .[42] Additionally, tipping points of Greenland and Antarctica ice sheets are likely to play a larger role over such timescales.[43] Ice loss from Antarctica is likely to dominate very long-term SLR, especially if the warming exceeds 2C-change. Continued carbon dioxide emissions from fossil fuel sources could cause additional tens of metres of sea level rise, over the next millennia.[44] Burning of all fossil fuels on Earth is sufficient to melt the entire Antarctic ice sheet, causing about of sea level rise.[45]
Year 2021 IPCC estimates for the amount of sea level rise over the next 2,000 years project that:
- At a warming peak of 1.5C-change, global sea levels would rise
- At a warming peak of 2C-change, sea levels would rise
- At a warming peak of 5C-change, sea levels would rise
Sea levels would continue to rise for several thousand years after the ceasing of emissions, due to the slow nature of climate response to heat. The same estimates on a timescale of 10,000 years project that:
- At a warming peak of 1.5C-change, global sea levels would rise
- At a warming peak of 2C-change, sea levels would rise
- At a warming peak of 5C-change, sea levels would rise
Measurements
Variations in the amount of water in the oceans, changes in its volume, or varying land elevation compared to the sea surface can drive sea level changes. Over a consistent time period, assessments can attribute contributions to sea level rise and provide early indications of change in trajectory. This helps to inform adaptation plans.[46] The different techniques used to measure changes in sea level do not measure exactly the same level. Tide gauges can only measure relative sea level. Satellites can also measure absolute sea level changes.[47] To get precise measurements for sea level, researchers studying the ice and oceans factor in ongoing deformations of the solid Earth. They look in particular at landmasses still rising from past ice masses retreating, and the Earth's gravity and rotation.
Satellites
Since the launch of TOPEX/Poseidon in 1992, an overlapping series of altimetric satellites has been continuously recording the sea level and its changes.[48] These satellites can measure the hills and valleys in the sea caused by currents and detect trends in their height. To measure the distance to the sea surface, the satellites send a microwave pulse towards Earth and record the time it takes to return after reflecting off the ocean's surface. Microwave radiometers correct the additional delay caused by water vapor in the atmosphere. Combining these data with the location of the spacecraft determines the sea-surface height to within a few centimetres.[49] These satellite measurements have estimated rates of sea level rise for 1993–2017 at 3± per year.[50]
Satellites are useful for measuring regional variations in sea level. An example is the substantial rise between 1993 and 2012 in the western tropical Pacific. This sharp rise has been linked to increasing trade winds. These occur when the Pacific Decadal Oscillation (PDO) and the El Niño–Southern Oscillation (ENSO) change from one state to the other.[51] The PDO is a basin-wide climate pattern consisting of two phases, each commonly lasting 10 to 30 years. The ENSO has a shorter period of 2 to 7 years.[52]
Tide gauges
The global network of tide gauges is the other important source of sea-level observations. Compared to the satellite record, this record has major spatial gaps but covers a much longer period.[53] Coverage of tide gauges started mainly in the Northern Hemisphere. Data for the Southern Hemisphere remained scarce up to the 1970s. The longest running sea-level measurements, NAP or Amsterdam Ordnance Datum were established in 1675, in Amsterdam.[54] Record collection is also extensive in Australia. They include measurements by Thomas Lempriere, an amateur meteorologist, beginning in 1837. Lempriere established a sea-level benchmark on a small cliff on the Isle of the Dead near the Port Arthur convict settlement in 1841.[55]
Together with satellite data for the period after 1992, this network established that global mean sea level rose 19.5cm (07.7inches) between 1870 and 2004 at an average rate of about 1.44 mm/yr. (For the 20th century the average is 1.7 mm/yr.)[56] By 2018, data collected by Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) had shown that the global mean sea level was rising by 3.2abbr=onNaNabbr=on per year. This was double the average 20th century rate.[57] [58] The 2023 World Meteorological Organization report found further acceleration to 4.62 mm/yr over the 2013–2022 period.[11] These observations help to check and verify predictions from climate change simulations.
Regional differences are also visible in the tide gauge data. Some are caused by local sea level differences. Others are due to vertical land movements. In Europe, only some land areas are rising while the others are sinking. Since 1970, most tidal stations have measured higher seas. However sea levels along the northern Baltic Sea have dropped due to post-glacial rebound.[59]
Past sea level rise
See main article: Past sea level and Marine transgression. An understanding of past sea level is an important guide to where current changes in sea level will end up. In the recent geological past, thermal expansion from increased temperatures and changes in land ice are the dominant reasons of sea level rise. The last time that the Earth was 2C-change warmer than pre-industrial temperatures was 120,000 years ago. This was when warming due to Milankovitch cycles (changes in the amount of sunlight due to slow changes in the Earth's orbit) caused the Eemian interglacial. Sea levels during that warmer interglacial were at least 5m (16feet) higher than now.[60] The Eemian warming was sustained over a period of thousands of years. The size of the rise in sea level implies a large contribution from the Antarctic and Greenland ice sheets. Levels of atmospheric carbon dioxide of around 400 parts per million (similar to 2000s) had increased temperature by over NaNC-change around three million years ago. This temperature increase eventually melted one third of Antarctica's ice sheet, causing sea levels to rise 20 meters above the preindustrial levels.[61]
Since the Last Glacial Maximum, about 20,000 years ago, sea level has risen by more than 125m (410feet). Rates vary from less than 1 mm/year during the pre-industrial era to 40+ mm/year when major ice sheets over Canada and Eurasia melted. Meltwater pulses are periods of fast sea level rise caused by the rapid disintegration of these ice sheets. The rate of sea level rise started to slow down about 8,200 years before today. Sea level was almost constant for the last 2,500 years. The recent trend of rising sea level started at the end of the 19th or beginning of the 20th century.[62]
Causes
Effects of climate change
See also: Effects of climate change. The three main reasons why global warming causes sea levels to rise are the expansion of oceans due to heating, water inflow from melting ice sheets and water inflow from glaciers. Other factors affecting sea level rise include changes in snow mass, and flow from terrestrial water storage, though the contribution from these is thought to be small.[1] Glacier retreat and ocean expansion have dominated sea level rise since the start of the 20th century. Some of the losses from glaciers are offset when precipitation falls as snow, accumulates and over time forms glacial ice. If precipitation, surface processes and ice loss at the edge balance each other, sea level remains the same. Because of this precipitation began as water vapor evaporated from the ocean surface, effects of climate change on the water cycle can even increase ice build-up. However, this effect is not enough to fully offset ice losses, and sea level rise continues to accelerate.[63]
The contributions of the two large ice sheets, in Greenland and Antarctica, are likely to increase in the 21st century.[64] They store most of the land ice (~99.5%) and have a sea-level equivalent (SLE) of 7.4m (24.3feet) for Greenland and 58.3m (191.3feet) for Antarctica.[1] Thus, melting of all the ice on Earth would result in about 70m (230feet) of sea level rise,[65] although this would require at least 10,000 years and up to 10C-change of global warming.
Ocean heating
See main article: Ocean heat content. The oceans store more than 90% of the extra heat added to the climate system by Earth's energy imbalance and act as a buffer against its effects.[66] This means that the same amount of heat that would increase the average world ocean temperature by 0.01C-change would increase atmospheric temperature by approximately 10C-change.[67] So a small change in the mean temperature of the ocean represents a very large change in the total heat content of the climate system. Winds and currents move heat into deeper parts of the ocean. Some of it reaches depths of more than 2000sigfig=2NaNsigfig=2.[68]
When the ocean gains heat, the water expands and sea level rises. Warmer water and water under great pressure (due to depth) expand more than cooler water and water under less pressure. Consequently, cold Arctic Ocean water will expand less than warm tropical water. Different climate models present slightly different patterns of ocean heating. So their projections do not agree fully on how much ocean heating contributes to sea level rise.[69]
Ice loss on the Antarctic continent
The large volume of ice on the Antarctic continent stores around 60% of the world's fresh water. Excluding groundwater this is 90%.[70] Antarctica is experiencing ice loss from coastal glaciers in the West Antarctica and some glaciers of East Antarctica. However it is gaining mass from the increased snow build-up inland, particularly in the East. This leads to contradicting trends. There are different satellite methods for measuring ice mass and change. Combining them helps to reconcile the differences.[71] However, there can still be variations between the studies. In 2018, a systematic review estimated average annual ice loss of 43 billion tons (Gt) across the entire continent between 1992 and 2002. This tripled to an annual average of 220 Gt from 2012 to 2017.[72] [73] However, a 2021 analysis of data from four different research satellite systems (Envisat, European Remote-Sensing Satellite, GRACE and GRACE-FO and ICESat) indicated annual mass loss of only about 12 Gt from 2012 to 2016. This was due to greater ice gain in East Antarctica than estimated earlier.
In the future, it is known that West Antarctica at least will continue to lose mass, and the likely future losses of sea ice and ice shelves, which block warmer currents from direct contact with the ice sheet, can accelerate declines even in East Antarctica.[74] Altogether, Antarctica is the source of the largest uncertainty for future sea level projections.[75] In 2019, the SROCC assessed several studies attempting to estimate 2300 sea level rise caused by ice loss in Antarctica alone, arriving at projected estimates of NaNm (-2,147,483,648feet) for the low emission RCP2.6 scenario, and NaNm (-2,147,483,648feet) in the high emission RCP8.5 scenario. This wide range of estimates is mainly due to the uncertainties regarding marine ice sheet and marine ice cliff instabilities.
East Antarctica
The world's largest potential source of sea level rise is the East Antarctic Ice Sheet (EAIS). It is 2.2 km thick on average and holds enough ice to raise global sea levels by 53.3 m (174 ft 10 in)[76] Its great thickness and high elevation make it more stable than the other ice sheets.[77] As of the early 2020s, most studies show that it is still gaining mass.[78] [72] [79] Some analyses have suggested it began to lose mass in the 2000s.[80] [81] [74] However they over-extrapolated some observed losses on to the poorly observed areas. A more complete observational record shows continued mass gain.[82] In spite of the net mass gain, some East Antarctica glaciers have lost ice in recent decades due to ocean warming and declining structural support from the local sea ice,[83] such as Denman Glacier,[84] [85] and Totten Glacier.[86] [87] Totten Glacier is particularly important because it stabilizes the Aurora Subglacial Basin. Subglacial basins like Aurora and Wilkes Basin are major ice reservoirs together holding as much ice as all of West Antarctica.[88] They are more vulnerable than the rest of East Antarctica.[89] Their collective tipping point probably lies at around 3C-change of global warming. It may be as high as 6C-change or as low as 2C-change. Once this tipping point is crossed, the collapse of these subglacial basins could take place over as little as 500 or as much as 10,000 years. The median timeline is 2000 years. Depending on how many subglacial basins are vulnerable, this causes sea level rise of between 1.4m (04.6feet) and 6.4m (21feet).[90]
On the other hand, the whole EAIS would not definitely collapse until global warming reaches 7.5C-change, with a range between 5C-change and 10C-change. It would take at least 10,000 years to disappear. Some scientists have estimated that warming would have to reach at least 6C-change to melt two thirds of its volume.[91]
West Antarctica
East Antarctica contains the largest potential source of sea level rise. However the West Antarctic ice sheet (WAIS) is substantially more vulnerable. Temperatures on West Antarctica have increased significantly, unlike East Antarctica and the Antarctic Peninsula. The trend is between 0.08C-change and 0.96C-change per decade between 1976 and 2012.[92] Satellite observations recorded a substantial increase in WAIS melting from 1992 to 2017. This resulted in NaNfrac=64NaNfrac=64 of Antarctica sea level rise. Outflow glaciers in the Amundsen Sea Embayment played a disproportionate role.[93]
The median estimated increase in sea level rise from Antarctica by 2100 is ~11round=5NaNround=5. There is no difference between scenarios, because the increased warming would intensify the water cycle and increase snowfall accumulation over the EAIS at about the same rate as it would increase ice loss from WAIS. However, most of the bedrock underlying the WAIS lies well below sea level, and it has to be buttressed by the Thwaites and Pine Island glaciers. If these glaciers were to collapse, the entire ice sheet would as well.[89] Their disappearance would take at least several centuries, but is considered almost inevitable, as their bedrock topography deepens inland and becomes more vulnerable to meltwater, in what is known as marine ice sheet instability.[94] [95] [96]
The contribution of these glaciers to global sea levels has already accelerated since the year 2000. The Thwaites Glacier now accounts for 4% of global sea level rise.[97] [98] It could start to lose even more ice if the Thwaites Ice Shelf fails and would no longer stabilize it, which could potentially occur in mid-2020s.[99] A combination of ice sheet instability with other important but hard-to-model processes like hydrofracturing (meltwater collects atop the ice sheet, pools into fractures and forces them open)[100] or smaller-scale changes in ocean circulation[101] [102] [103] could cause the WAIS to contribute up to 410NaN0 by 2100 under the low-emission scenario and up to 570NaN0 under the highest-emission one. Ice cliff instability would cause a contribution of or more if it were applicable.
The melting of all the ice in West Antarctica would increase the total sea level rise to 4.3m (14.1feet).[104] However, mountain ice caps not in contact with water are less vulnerable than the majority of the ice sheet, which is located below the sea level.[105] Its collapse would cause ~3.3m (10.8feet) of sea level rise.[106] This disappearance would take an estimated 2000 years. The absolute minimum for the loss of West Antarctica ice is 500 years, and the potential maximum is 13,000 years.[107] [108]
Once ice loss from the West Antarctica is triggered, the only way to restore it to near-present values is by lowering the global temperature to 1C-change below the preindustrial level. This would be 2C-change below the temperature of 2020. Other researchers suggested that a climate engineering intervention to stabilize the ice sheet's glaciers may delay its loss by centuries and give more time to adapt. However this is an uncertain proposal, and would end up as one of the most expensive projects ever attempted.[109] [110]
Ice sheet loss in Greenland
Most ice on Greenland is in the Greenland ice sheet which is 3abbr=onNaNabbr=on at its thickest. The rest of Greenland ice forms isolated glaciers and ice caps. The average annual ice loss in Greenland more than doubled in the early 21st century compared to the 20th century.[111] Its contribution to sea level rise correspondingly increased from 0.07 mm per year between 1992 and 1997 to 0.68 mm per year between 2012 and 2017. Total ice loss from the Greenland ice sheet between 1992 and 2018 amounted to 3,902 gigatons (Gt) of ice. This is equivalent to a SLR contribution of 10.8 mm.[112] The contribution for the 2012–2016 period was equivalent to 37% of sea level rise from land ice sources (excluding thermal expansion).[113] This observed rate of ice sheet melting is at the higher end of predictions from past IPCC assessment reports.[114] [20] In 2021, AR6 estimated that by 2100, the melting of Greenland ice sheet would most likely add around to sea levels under the low-emission scenario, and under the high-emission scenario. The first scenario, SSP1-2.6, largely fulfils the Paris Agreement goals, while the other, SSP5-8.5, has the emissions accelerate throughout the century. The uncertainty about ice sheet dynamics can affect both pathways. In the best-case scenario, ice sheet under SSP1-2.6 gains enough mass by 2100 through surface mass balance feedbacks to reduce the sea levels by . In the worst case, it adds . For SSP5-8.5, the best-case scenario is adding to sea levels, and the worst-case is adding .
Greenland's peripheral glaciers and ice caps crossed an irreversible tipping point around 1997. Sea level rise from their loss is now unstoppable.[115] [116] [117] However the temperature changes in future, the warming of 2000–2019 had already damaged the ice sheet enough for it to eventually lose ~3.3% of its volume. This is leading to of future sea level rise.[118] At a certain level of global warming, the Greenland ice sheet will almost completely melt. Ice cores show this happened at least once over the last million years, during which the temperatures have at most been 2.5C-change warmer than the preindustrial average.[119] [120]
2012 modelling suggested that the tipping point of the ice sheet was between 0.8C-change and 3.2C-change.[121] 2023 modelling has narrowed the tipping threshold to a 1.7C-change-2.3C-change range, which is consistent with the empirical 2.5C-change upper limit from ice cores. If temperatures reach or exceed that level, reducing the global temperature to 1.5C-change above pre-industrial levels or lower would prevent the loss of the entire ice sheet. One way to do this in theory would be large-scale carbon dioxide removal, but there would still be cause greater ice losses and sea level rise from Greenland than if the threshold was not breached in the first place.[122] If the tipping point instead is durably but mildly crossed, the ice sheet would take between 10,000 and 15,000 years to disintegrate entirel, with a most likely estimate of 10,000 years. If climate change continues along its worst trajectory and temperatures continue to rise quickly over multiple centuries, it would only take 1,000 years.[123]
Mountain glacier loss
There are roughly 200,000 glaciers on Earth, which are spread out across all continents.[124] Less than 1% of glacier ice is in mountain glaciers, compared to 99% in Greenland and Antarctica. However, this small size also makes mountain glaciers more vulnerable to melting than the larger ice sheets. This means they have had a disproportionate contribution to historical sea level rise and are set to contribute a smaller, but still significant fraction of sea level rise in the 21st century.[125] Observational and modelling studies of mass loss from glaciers and ice caps show they contribute 0.2-0.4 mm per year to sea level rise, averaged over the 20th century.[126] The contribution for the 2012–2016 period was nearly as large as that of Greenland. It was 0.63 mm of sea level rise per year, equivalent to 34% of sea level rise from land ice sources. Glaciers contributed around 40% to sea level rise during the 20th century, with estimates for the 21st century of around 30%.[1]
In 2023, a Science paper estimated that at 1.5C-change, one quarter of mountain glacier mass would be lost by 2100 and nearly half would be lost at 4C-change, contributing ~ and ~ to sea level rise, respectively. Glacier mass is disproportionately concentrated in the most resilient glaciers. So in practice this would remove 49-83% of glacier formations. It further estimated that the current likely trajectory of 2.7C-change would result in the SLR contribution of ~ by 2100.[127] Mountain glaciers are even more vulnerable over the longer term. In 2022, another Science paper estimated that almost no mountain glaciers could survive once warming crosses 2C-change. Their complete loss is largely inevitable around 3C-change. There is even a possibility of complete loss after 2100 at just 1.5C-change. This could happen as early as 50 years after the tipping point is crossed, although 200 years is the most likely value, and the maximum is around 1000 years.
Sea ice loss
Sea ice loss contributes very slightly to global sea level rise. If the melt water from ice floating in the sea was exactly the same as sea water then, according to Archimedes' principle, no rise would occur. However melted sea ice contains less dissolved salt than sea water and is therefore less dense, with a slightly greater volume per unit of mass. If all floating ice shelves and icebergs were to melt sea level would only rise by about 4frac=2NaNfrac=2.[128]
Changes to land water storage
See also: Groundwater-related subsidence.
Human activity impacts how much water is stored on land. Dams retain large quantities of water, which is stored on land rather than flowing into the sea, though the total quantity stored will vary from time to time. On the other hand, humans extract water from lakes, wetlands and underground reservoirs for drinking and food production. This often causes subsidence. Furthermore, the hydrological cycle is influenced by climate change and deforestation. In the 20th century, these processes had approximately cancelled out each other's impact on sea level rise, but dam building has slowed down and is expected to stay low for the 21st century.[129]
Water redistribution caused by irrigation from 1993 to 2010 caused a drift of Earth's rotational pole by 78.48cm (30.9inches). This caused groundwater depletion equivalent to a global sea level rise of 6.24mm.[130]
Impacts
See also: Coastal development hazards and Coastal erosion.
On people and societies
Sea-level rise has many impacts. They include higher and more frequent high-tide and storm-surge flooding and increased coastal erosion. Other impacts are inhibition of primary production processes, more extensive coastal inundation, and changes in surface water quality and groundwater. These can lead to a greater loss of property and coastal habitats, loss of life during floods and loss of cultural resources. There are also impacts on agriculture and aquaculture. There can also be loss of tourism, recreation, and transport-related functions.[131] Land use changes such as urbanisation or deforestation of low-lying coastal zones exacerbate coastal flooding impacts. Regions already vulnerable to rising sea level also struggle with coastal flooding. This washes away land and alters the landscape.[132]
Changes in emissions are likely to have only a small effect on the extent of sea level rise by 2050. So projected sea level rise could put tens of millions of people at risk by then. Scientists estimate that 2050 levels of sea level rise would result in about 150 million people under the water line during high tide. About 300 million would be in places flooded every year. This projection is based on the distribution of population in 2010. It does not take into account the effects of population growth and human migration. These figures are 40 million and 50 million more respectively than the numbers at risk in 2010.[133] [134] By 2100, there would be another 40 million people under the water line during high tide if sea level rise remains low. This figure would be 80 million for a high estimate of median sea level rise. Ice sheet processes under the highest emission scenario would result in sea level rise of well over 1frac=4NaNfrac=4 by 2100. This could be as much as over 2frac=2NaNfrac=2, This could result in as many as 520 million additional people ending up under the water line during high tide and 640 million in places flooded every year, compared to the 2010 population distribution.Over the longer term, coastal areas are particularly vulnerable to rising sea levels. They are also vulnerable to changes in the frequency and intensity of storms, increased precipitation, and rising ocean temperatures. Ten percent of the world's population live in coastal areas that are less than 10m (30feet) above sea level. Two thirds of the world's cities with over five million people are located in these low-lying coastal areas.[135] About 600 million people live directly on the coast around the world.[136] Cities such as Miami, Rio de Janeiro, Osaka and Shanghai will be especially vulnerable later in the century under warming of 3 °C (5.4 °F). This is close to the current trajectory.[137] [18] LiDAR-based research had established in 2021 that 267 million people worldwide lived on land less than above sea level. With a sea level rise and zero population growth, that could increase to 410 million people.[138] [139]
Potential disruption of sea trade and migrations could impact people living further inland. United Nations Secretary-General António Guterres warned in 2023 that sea level rise risks causing human migrations on a "biblical scale".[140] Sea level rise will inevitably affect ports, but there is limited research on this. There is insufficient knowledge about the investments necessary to protect ports currently in use. This includes protecting current facilities before it becomes more reasonable to build new ports elsewhere.[141] [142] Some coastal regions are rich agricultural lands. Their loss to the sea could cause food shortages. This is a particularly acute issue for river deltas such as Nile Delta in Egypt and Red River and Mekong Deltas in Vietnam. Saltwater intrusion into the soil and irrigation water has a disproportionate effect on them.[143]
On ecosystems
See also: Extinction risk from climate change. Flooding and soil/water salinization threaten the habitats of coastal plants, birds, and freshwater/estuarine fish when seawater reaches inland.[144] When coastal forest areas become inundated with saltwater to the point no trees can survive the resulting habitats are called ghost forests.[145] [146] Starting around 2050, some nesting sites in Florida, Cuba, Ecuador and the island of Sint Eustatius for leatherback, loggerhead, hawksbill, green and olive ridley turtles are expected to be flooded. The proportion will increase over time.[147] In 2016, Bramble Cay islet in the Great Barrier Reef was inundated. This flooded the habitat of a rodent named Bramble Cay melomys.[148] It was officially declared extinct in 2019.[149] Some ecosystems can move inland with the high-water mark. But natural or artificial barriers prevent many from migrating. This coastal narrowing is sometimes called 'coastal squeeze' when it involves human-made barriers. It could result in the loss of habitats such as mudflats and tidal marshes.[150] [151] Mangrove ecosystems on the mudflats of tropical coasts nurture high biodiversity. They are particularly vulnerable due to mangrove plants' reliance on breathing roots or pneumatophores. These will be submerged if the rate is too rapid for them to migrate upward. This would result in the loss of an ecosystem.[152] [153] [154] [155] Both mangroves and tidal marshes protect against storm surges, waves and tsunamis, so their loss makes the effects of sea level rise worse.[156] [157] Human activities such as dam building may restrict sediment supplies to wetlands. This would prevent natural adaptation processes. The loss of some tidal marshes is unavoidable as a consequence.[158]
Corals are important for bird and fish life. They need to grow vertically to remain close to the sea surface in order to get enough energy from sunlight. The corals have so far been able to keep up the vertical growth with the rising seas, but might not be able to do so in the future.[159]
Regional variations
When a glacier or ice sheet melts, it loses mass. This reduces its gravitational pull. In some places near current and former glaciers and ice sheets, this has caused water levels to drop. At the same time water levels will increase more than average further away from the ice sheet. Thus ice loss in Greenland affects regional sea level differently than the equivalent loss in Antarctica.[160] On the other hand, the Atlantic is warming at a faster pace than the Pacific. This has consequences for Europe and the U.S. East Coast. The East Coast sea level is rising at 3–4 times the global average.[161] Scientists have linked extreme regional sea level rise on the US Northeast Coast to the downturn of the Atlantic meridional overturning circulation (AMOC).[162]
Many ports, urban conglomerations, and agricultural regions stand on river deltas. Here land subsidence contributes to much higher relative sea level rise. Unsustainable extraction of groundwater and oil and gas is one cause. Levees and other flood management practices are another. They prevent sediments from accumulating. These would otherwise compensate for the natural settling of deltaic soils.[163] [164]
Estimates for total human-caused subsidence in the Rhine-Meuse-Scheldt delta (Netherlands) are, over in urban areas of the Mississippi River Delta (New Orleans), and over in the Sacramento–San Joaquin River Delta. On the other hand, relative sea level around the Hudson Bay in Canada and the northern Baltic Sea is falling due to post-glacial isostatic rebound.[165]
Adaptation
Cutting greenhouse gas emissions can slow and stabilize the rate of sea level rise after 2050. This would greatly reduce its costs and damages, but cannot stop it outright. So climate change adaptation to sea level rise is inevitable.[166] The simplest approach is to stop development in vulnerable areas and ultimately move people and infrastructure away from them. Such retreat from sea level rise often results in the loss of livelihoods. The displacement of newly impoverished people could burden their new homes and accelerate social tensions.[167]
It is possible to avoid or at least delay the retreat from sea level rise with enhanced protections. These include dams, levees or improved natural defenses. Other options include updating building standards to reduce damage from floods, addition of storm water valves to address more frequent and severe flooding at high tide,[168] or cultivating crops more tolerant of saltwater in the soil, even at an increased cost.[169] These options divide into hard and soft adaptation. Hard adaptation generally involves large-scale changes to human societies and ecological systems. It often includes the construction of capital-intensive infrastructure. Soft adaptation involves strengthening natural defenses and local community adaptation. This usually involves simple, modular and locally owned technology. The two types of adaptation may be complementary or mutually exclusive.[170] Adaptation options often require significant investment. But the costs of doing nothing are far greater. One example would involve adaptation against flooding. Effective adaptation measures could reduce future annual costs of flooding in 136 of the world's largest coastal cities from $1 trillion by 2050 without adaptation to a little over $60 billion annually. The cost would be $50 billion per year.[171] [172] Some experts argue that retreat from the coast would have a lower impact on the GDP of India and Southeast Asia then attempting to protect every coastline, in the case of very high sea level rise.[173] To be successful, adaptation must anticipate sea level rise well ahead of time. As of 2023, the global state of adaptation planning is mixed. A survey of 253 planners from 49 countries found that 98% are aware of sea level rise projections, but 26% have not yet formally integrated them into their policy documents. Only around a third of respondents from Asian and South American countries have done so. This compares with 50% in Africa, and over 75% in Europe, Australasia and North America. Some 56% of all surveyed planners have plans which account for 2050 and 2100 sea level rise. But 53% use only a single projection rather than a range of two or three projections. Just 14% use four projections, including the one for "extreme" or "high-end" sea level rise.[174] Another study found that over 75% of regional sea level rise assessments from the West and Northeastern United States included at least three estimates. These are usually RCP2.6, RCP4.5 and RCP8.5, and sometimes include extreme scenarios. But 88% of projections from the American South had only a single estimate. Similarly, no assessment from the South went beyond 2100. By contrast 14 assessments from the West went up to 2150, and three from the Northeast went to 2200. 56% of all localities were also found to underestimate the upper end of sea level rise relative to IPCC Sixth Assessment Report.[175]
By region
Africa
In Africa, future population growth amplifies risks from sea level rise. Some 54.2 million people lived in the highly exposed low elevation coastal zones (LECZ) around 2000. This number will effectively double to around 110 million people by 2030, and then reach 185 to 230 million people by 2060. By then, the average regional sea level rise will be around 21 cm, with little difference from climate change scenarios. By 2100, Egypt, Mozambique and Tanzania are likely to have the largest number of people affected by annual flooding amongst all African countries. And under RCP8.5, 10 important cultural sites would be at risk of flooding and erosion by the end of the century.
In the near term, some of the largest displacement is projected to occur in the East Africa region. At least 750,000 people there are likely to be displaced from the coasts between 2020 and 2050. By 2050, 12 major African cities would collectively sustain cumulative damages of US$65 billion for the "moderate" climate change scenario RCP4.5 and between US$86.5 billion to US$137.5 billion on average: in the worst case, these damages could effectively triple. In all of these estimates, around half of the damages would occur in the Egyptian city of Alexandria. Hundreds of thousands of people in its low-lying areas may already need relocation in the coming decade.[176] Across sub-Saharan Africa as a whole, damage from sea level rise could reach 2–4% of GDP by 2050, although this depends on the extent of future economic growth and climate change adaptation.
Asia
Asia has the largest population at risk from sea level due to its dense coastal populations. As of 2022, some 63 million people in East and South Asia were already at risk from a 100-year flood. This is largely due to inadequate coastal protection in many countries. Bangladesh, China, India, Indonesia, Japan, Pakistan, the Philippines, Thailand and Vietnam alone account for 70% of people exposed to sea level rise during the 21st century.[177] Sea level rise in Bangladesh is likely to displace 0.9-2.1 million people by 2050. It may also force the relocation of up to one third of power plants as early as 2030, and many of the remaining plants would have to deal with the increased salinity of their cooling water.[178] Nations like Bangladesh, Vietnam and China with extensive rice production on the coast are already seeing adverse impacts from saltwater intrusion.[179]
Modelling results predict that Asia will suffer direct economic damages of US$167.6 billion at 0.47 meters of sea level rise. This rises to US$272.3 billion at 1.12 meters and US$338.1 billion at 1.75 meters. There is an additional indirect impact of US$8.5, 24 or 15 billion from population displacement at those levels. China, India, the Republic of Korea, Japan, Indonesia and Russia experience the largest economic losses.[180] Out of the 20 coastal cities expected to see the highest flood losses by 2050, 13 are in Asia. Nine of these are the so-called sinking cities, where subsidence (typically caused by unsustainable groundwater extraction in the past) would compound sea level rise. These are Bangkok, Guangzhou, Ho Chi Minh City, Jakarta, Kolkata, Nagoya, Tianjin, Xiamen and Zhanjiang.[181]
By 2050, Guangzhou would see 0.2 meters of sea level rise and estimated annual economic losses of US$254 million – the highest in the world. In Shanghai, coastal inundation amounts to about 0.03% of local GDP, yet would increase to 0.8% by 2100 even under the "moderate" RCP4.5 scenario in the absence of adaptation. The city of Jakarta is sinking so much (up to per year between 1982 and 2010 in some areas[182]) that in 2019, the government had committed to relocate the capital of Indonesia to another city.[183]
Australasia
In Australia, erosion and flooding of Queensland's Sunshine Coast beaches is likely to intensify by 60% by 2030. Without adaptation there would be a big impact on tourism. Adaptation costs for sea level rise would be three times higher under the high-emission RCP8.5 scenario than in the low-emission RCP2.6 scenario. Sea level rise of 0.2-0.3 meters is likely by 2050. In these conditions what is currently a 100-year flood would occur every year in the New Zealand cities of Wellington and Christchurch. With 0.5 m sea level rise, a current 100-year flood in Australia would occur several times a year. In New Zealand this would expose buildings with a collective worth of NZ$12.75 billion to new 100-year floods. A meter or so of sea level rise would threaten assets in New Zealand with a worth of NZD$25.5 billion. There would be a disproportionate impact on Maori-owned holdings and cultural heritage objects. Australian assets worth AUS$164–226 billion including many unsealed roads and railway lines would also be at risk. This amounts to a 111% rise in Australia's inundation costs between 2020 and 2100.[184]
Central and South America
By 2100, coastal flooding and erosion will affect at least 3-4 million people in South America. Many people live in low-lying areas exposed to sea level rise. This includes 6% of the population of Venezuela, 56% of the population of Guyana and 68% of the population of Suriname. In Guyana much of the capital Georgetown is already below sea level. In Brazil, the coastal ecoregion of Caatinga is responsible for 99% of its shrimp production. A combination of sea level rise, ocean warming and ocean acidification threaten its unique. Extreme wave or wind behavior disrupted the port complex of Santa Catarina 76 times in one 6-year period in the 2010s. There was a US$25,000-50,000 loss for each idle day. In Port of Santos, storm surges were three times more frequent between 2000 and 2016 than between 1928 and 1999.[185]
Europe
Many sandy coastlines in Europe are vulnerable to erosion due to sea level rise. In Spain, Costa del Maresme is likely to retreat by 16 meters by 2050 relative to 2010. This could amount to 52 meters by 2100 under RCP8.5[186] Other vulnerable coastlines include the Tyrrhenian Sea coast of Italy's Calabria region,[187] the Barra-Vagueira coast in Portugal[188] and Nørlev Strand in Denmark.[189]
In France, it was estimated that 8,000-10,000 people would be forced to migrate away from the coasts by 2080.[190] The Italian city of Venice is located on islands. It is highly vulnerable to flooding and has already spent $6 billion on a barrier system.[191] [192] A quarter of the German state of Schleswig-Holstein, inhabited by over 350,000 people, is at low elevation and has been vulnerable to flooding since preindustrial times. Many levees already exist. Because of its complex geography, the authorities chose a flexible mix of hard and soft measures to cope with sea level rise of over 1 meter per century.[193] In the United Kingdom, sea level at the end of the century would increase by 53 to 115 centimeters at the mouth of the River Thames and 30 to 90 centimeters at Edinburgh.[194] The UK has divided its coast into 22 areas, each covered by a Shoreline Management Plan. Those are sub-divided into 2000 management units, working across three periods of 0–20, 20-50 and 50–100 years.
The Netherlands is a country that sits partially below sea level and is subsiding. It has responded by extending its Delta Works program.[195] Drafted in 2008, the Delta Commission report said that the country must plan for a rise in the North Sea up to 1.3m (04.3feet) by 2100 and plan for a NaNm (-2,147,483,648feet) rise by 2200.[196] It advised annual spending between €1.0 and €1.5 billion. This would support measures such as broadening coastal dunes and strengthening sea and river dikes. Worst-case evacuation plans were also drawn up.[197]
North America
As of 2017, around 95 million Americans lived on the coast. The figures for Canada and Mexico were 6.5 million and 19 million. Increased chronic nuisance flooding and king tide flooding is already a problem in the highly vulnerable state of Florida.[198] The US East Coast is also vulnerable.[199] On average, the number of days with tidal flooding in the US increased 2 times in the years 2000–2020, reaching 3–7 days per year. In some areas the increase was much stronger: 4 times in the Southeast Atlantic and 11 times in the Western Gulf. By the year 2030 the average number is expected to be 7–15 days, reaching 25–75 days by 2050.[200] U.S. coastal cities have responded with beach nourishment or beach replenishment. This trucks in mined sand in addition to other adaptation measures such as zoning, restrictions on state funding, and building code standards.[201] [202]
Along an estimated ~15% of the US coastline, the majority of local groundwater levels are already below sea level. This places those groundwater reservoirs at risk of sea water intrusion. That would render fresh water unusable once its concentration exceeds 2-3%.[203] Damage is also widespread in Canada. It will affect major cities like Halifax and more remote locations like Lennox Island. The Mi'kmaq community there is already considering relocation due to widespread coastal erosion. In Mexico, damage from SLR to tourism hotspots like Cancun, Isla Mujeres, Playa del Carmen, Puerto Morelos and Cozumel could amount to US$1.4–2.3 billion. The increase in storm surge due to sea level rise is also a problem. Due to this effect Hurricane Sandy caused an additional US$8 billion in damage, impacted 36,000 more houses and 71,000 more people.[204] [205] In the future, the northern Gulf of Mexico, Atlantic Canada and the Pacific coast of Mexico would experience the greatest sea level rise. By 2030, flooding along the US Gulf Coast could cause economic losses of up to US$176 billion. Using nature-based solutions like wetland restoration and oyster reef restoration could avoid around US$50 billion of this.
By 2050, coastal flooding in the US is likely to rise tenfold to four "moderate" flooding events per year. That forecast is even without storms or heavy rainfall.[206] [207] In New York City, current 100-year flood would occur once in 19–68 years by 2050 and 4–60 years by 2080.[208] By 2050, 20 million people in the greater New York City area would be at risk. This is because 40% of existing water treatment facilities would be compromised and 60% of power plants will need relocation.
By 2100, sea level rise of and would threaten 4.2 and 13.1 million people in the US, respectively. In California alone, of SLR could affect 600,000 people and threaten over US$150 billion in property with inundation. This potentially represents over 6% of the state's GDP. In North Carolina, a meter of SLR inundates 42% of the Albemarle-Pamlico Peninsula, costing up to US$14 billion. In nine southeast US states, the same level of sea level rise would claim up to 13,000 historical and archaeological sites, including over 1000 sites eligible for inclusion in the National Register for Historic Places.[209]
Island nations
Small island states are nations with populations on atolls and other low islands. Atolls on average reach NaNfeet above sea level.[210] These are the most vulnerable places to coastal erosion, flooding and salt intrusion into soils and freshwater caused by sea level rise. Sea level rise may make an island uninhabitable before it is completely flooded.[211] Already, children in small island states encounter hampered access to food and water. They suffer an increased rate of mental and social disorders due to these stresses.[212] At current rates, sea level rise would be high enough to make the Maldives uninhabitable by 2100.[213] [214] Five of the Solomon Islands have already disappeared due to the effects of sea level rise and stronger trade winds pushing water into the Western Pacific.[215]
Adaptation to sea level rise is costly for small island nations as a large portion of their population lives in areas that are at risk.[216] Nations like Maldives, Kiribati and Tuvalu already have to consider controlled international migration of their population in response to rising seas. The alternative of uncontrolled migration threatens to worsen the humanitarian crisis of climate refugees.[217] In 2014, Kiribati purchased 20 square kilometers of land (about 2.5% of Kiribati's current area) on the Fijian island of Vanua Levu to relocate its population once their own islands are lost to the sea.[218]
Fiji also suffers from sea level rise.[219] It is in a comparatively safer position. Its residents continue to rely on local adaptation like moving further inland and increasing sediment supply to combat erosion instead of relocating entirely.[220] Fiji has also issued a green bond of $50 million to invest in green initiatives and fund adaptation efforts. It is restoring coral reefs and mangroves to protect against flooding and erosion. It sees this as a more cost-efficient alternative to building sea walls. The nations of Palau and Tonga are taking similar steps.[221] Even when an island is not threatened with complete disappearance from flooding, tourism and local economies may end up devastated. For instance, sea level rise of would cause partial or complete inundation of 29% of coastal resorts in the Caribbean. A further 49–60% of coastal resorts would be at risk from resulting coastal erosion.[222]
External links
Notes and References
- WCRP Global Sea Level Budget Group . 2018 . Global sea-level budget 1993–present . Earth System Science Data . 10 . 3 . 1551–1590 . 2018ESSD...10.1551W . 10.5194/essd-10-1551-2018 . This corresponds to a mean sea-level rise of about 7.5 cm over the whole altimetry period. More importantly, the GMSL curve shows a net acceleration, estimated to be at 0.08mm/yr2. . free. 20.500.11850/287786 . free .
- Book: ((National Academies of Sciences, Engineering, and Medicine)) . 2011 . Box SYN-1: Sustained warming could lead to severe impacts . https://nap.nationalacademies.org/read/12877/chapter/3 . 5 . Synopsis . Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia . Washington, DC . The National Academies Press . 10.17226/12877 . 978-0-309-15176-4 . 2022-04-11 . 2023-06-30 . https://web.archive.org/web/20230630084322/https://nap.nationalacademies.org/read/12877/chapter/3 . live .
- IPCC, 2021: Summary for Policymakers . In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.). Cambridge University Press, Cambridge, UK and New York, US, pp. 3−32, .
- Book: Bindoff . N. L. . Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change . Willebrand . J. . Artale . V. . Cazenave . A. . Gregory . J. . Gulev . S. . Hanawa . K. . Le Quéré . C. . Levitus . S. . 2007 . 978-0-521-88009-1 . Solomon . S. . en . Observations: Ocean Climate Change and Sea Level: §5.5.1: Introductory Remarks . Anny Cazenave . 25 January 2017 . Qin . D. . Manning . M. . Chen . Z. . Marquis . M. . Averyt . K. B. . Tignor . M. . Miller . H. L. . http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch5s5-5.html#5-5-1 . https://web.archive.org/web/20170620210108/http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch5.html . 20 June 2017 . Nojiri, Y. . Shum, C. K. . Talley, L. D. . Unnikrishnan, A.. Cambridge University Press.
- Web site: Choi . Charles Q. . 27 June 2012. Sea Levels Rising Fast on U.S. East Coast . https://web.archive.org/web/20210504002931/https://www.nationalgeographic.com/science/article/120625-sea-level-rise-east-coast-us-science-nature-climate-change . May 4, 2021 . October 22, 2022 . National Oceanic and Atmospheric Administration.
- Web site: 2022 Sea Level Rise Technical Report . 2022-07-04 . oceanservice.noaa.gov . EN-US . 2022-11-29 . https://web.archive.org/web/20221129070303/https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.html . live .
- Mimura. Nobuo. 2013. Sea-level rise caused by climate change and its implications for society. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences. 89. 7. 281–301. 10.2183/pjab.89.281. 0386-2208. 3758961. 23883609. 2013PJAB...89..281M.
- Mycoo, M., M. Wairiu, D. Campbell, V. Duvat, Y. Golbuu, S. Maharaj, J. Nalau, P. Nunn, J. Pinnegar, and O. Warrick, 2022: Chapter 15: Small islands . In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, US, pp. 2043–2121..
- Web site: 2013 . IPCC's New Estimates for Increased Sea-Level Rise . Yale University Press . 2015-09-01 . 2020-03-28 . https://web.archive.org/web/20200328215506/https://www.yaleclimateconnections.org/2013/10/ipccs-new-estimates-for-increased-sea-level-rise/ . live .
- Thomsen . Dana C. . Smith . Timothy F. . Keys . Noni . 2012 . Adaptation or Manipulation? Unpacking Climate Change Response Strategies . Ecology and Society . 17 . 3 . 10.5751/es-04953-170320 . 26269087 . free. 10535/8585 . free .
- Web site: 21 April 2023 . WMO annual report highlights continuous advance of climate change . World Meteorological Organization . Press Release Number: 21042023. . 18 December 2023 . 17 December 2023 . https://web.archive.org/web/20231217002918/https://wmo.int/news/media-centre/wmo-annual-report-highlights-continuous-advance-of-climate-change . live .
- Katsman . Caroline A. . Sterl . A. . Beersma . J. J. . van den Brink . H. W. . Church . J. A. . Hazeleger . W. . Kopp . R. E. . Kroon . D. . Kwadijk . J. . 2011 . Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example . Climatic Change . 109 . 3–4 . 617–645 . 10.1007/s10584-011-0037-5 . 0165-0009 . 2242594 . free.
- Book: Church . J. A. . Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . Clark . P. U. . Cambridge University Press . 2013 . Stocker . T. F. . Cambridge, UK and New York, US . Sea Level Change . 2018-08-12 . etal . https://ipcc.ch/report/ar5/wg1/ . https://web.archive.org/web/20200509055710/https://www.ipcc.ch/report/ar5/wg1/ . 2020-05-09 . live.
- Moore . John C. . Grinsted . Aslak . Zwinger . Thomas . Jevrejeva . Svetlana . 10 June 2013 . Semiempirical and process-based global sea level projections . Reviews of Geophysics . 51 . 3 . 484-522 . 10.1002/rog.20015 . 2013RvGeo..51..484M.
- DeConto . Robert M. . Pollard . David . 30 March 2016 . Contribution of Antarctica to past and future sea-level rise . Nature . en . 531 . 7596 . 591–597 . 10.1038/nature17145 . 27029274 . 2016Natur.531..591D . 205247890.
- News: Gillis . Justin . 30 March 2016 . Climate Model Predicts West Antarctic Ice Sheet Could Melt Rapidly . The New York Times . 28 May 2024 . 9 June 2024 . https://web.archive.org/web/20240609214842/https://www.nytimes.com/2016/03/31/science/global-warming-antarctica-ice-sheet-sea-level-rise.html . live .
- Slangen . A. B. A. . Haasnoot . M. . Winter . G. . 30 March 2022 . Rethinking Sea-Level Projections Using Families and Timing Differences . Earth's Future . 10 . 4 . e2021EF002576 . 10.1029/2021EF002576 . 2022EaFut..1002576S . 28 May 2024 . 26 May 2024 . https://web.archive.org/web/20240526230811/https://www.vliz.be/imisdocs/publications/00/378000.pdf . live .
- Web site: The CAT Thermometer . 8 January 2023 . 14 April 2019 . https://web.archive.org/web/20190414131223/https://climateactiontracker.org/global/cat-thermometer/ . live .
- News: Ice sheet melt on track with 'worst-case climate scenario' . en . www.esa.int . 8 September 2020 . 9 June 2023 . https://web.archive.org/web/20230609213115/https://www.esa.int/Applications/Observing_the_Earth/Space_for_our_climate/Ice_sheet_melt_on_track_with_worst-case_climate_scenario . live .
- Slater . Thomas . Hogg . Anna E. . Mottram . Ruth . Ruth Mottram . 31 August 2020 . Ice-sheet losses track high-end sea-level rise projections . Nature Climate Change . en . 10 . 10 . 879–881 . 2020NatCC..10..879S . 10.1038/s41558-020-0893-y . 1758-6798 . https://web.archive.org/web/20200902132539/https://www.nature.com/articles/s41558-020-0893-y . 2 September 2020 . 8 September 2020 . 221381924.
- Grinsted . Aslak . Christensen . Jens Hesselbjerg . 2 February 2021 . The transient sensitivity of sea level rise . Ocean Science . 17 . 1 . 181–186 . 2021OcSci..17..181G . 10.5194/os-17-181-2021 . 1812-0784 . 234353584 . free . 11250/3135359 . free . 3 February 2021 . 19 June 2022 . https://web.archive.org/web/20220619123914/https://os.copernicus.org/articles/17/181/2021/ . live .
- Hansen . James . Sato . Makiko . Hearty . Paul . Ruedy . Reto . Kelley . Maxwell . Masson-Delmotte . Valerie . Russell . Gary . Tselioudis . George . Cao . Junji . Rignot . Eric . Velicogna . Isabella . 22 March 2016 . Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous . Atmospheric Chemistry and Physics . 16 . 6 . 3761–3812 . 1602.01393 . 2016ACP....16.3761H . 10.5194/acp-16-3761-2016 . Michael . Kwok-Wai . Lo . Blair . Bauer . Allegra N. . Legrande . Pushker . Kharecha . Karina . von Schuckmann . Evgeniya . Kandiano . Bailey . Donovan . Tormey . Isabella Velicogna . 9410444 . free.
- Fox-Kemper . B. . Hewitt . Helene T. . Helene Hewitt . Xiao . C. . Aðalgeirsdóttir . G. . Drijfhout . S. S. . Edwards . T. L. . Golledge . N. R. . Hemer . M. . Kopp . R. E. . Krinner . G. . Mix . A. . 2021 . Masson-Delmotte . V. . Zhai . P. . Pirani . A. . Connors . S. L. . Péan . C. . Berger . S. . Caud . N. . Chen . Y. . Goldfarb . L. . Chapter 9: Ocean, Cryosphere and Sea Level Change . Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press, Cambridge, UK and New York, US . 2022-10-18 . 2022-10-24 . https://web.archive.org/web/20221024162651/https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter09.pdf . live .
- Pattyn . Frank . Frank Pattyn . 2018 . The paradigm shift in Antarctic ice sheet modelling . Nature Communications . En . 9 . 1 . 2728 . 2018NatCo...9.2728P . 10.1038/s41467-018-05003-z . 2041-1723 . 6048022 . 30013142.
- Dow. Christine F.. Lee. Won Sang. Greenbaum. Jamin S.. Greene. Chad A.. Blankenship. Donald D.. Poinar. Kristin. Forrest. Alexander L.. Young. Duncan A.. Zappa. Christopher J.. 2018-06-01. Basal channels drive active surface hydrology and transverse ice shelf fracture. Science Advances. en. 4. 6. eaao7212. 10.1126/sciadv.aao7212. 2375-2548. 6007161. 29928691. 2018SciA....4.7212D.
- Horton . Benjamin P. . Khan . Nicole S. . Cahill . Niamh . Lee . Janice S. H. . Shaw . Timothy A. . Garner . Andra J. . Kemp . Andrew C. . Engelhart . Simon E. . Rahmstorf . Stefan . 2020-05-08 . Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey . npj Climate and Atmospheric Science . 3 . 1 . 18 . 10.1038/s41612-020-0121-5 . 2020npCAS...3...18H . 218541055 . 10356/143900 . free.
- News: 2015 . James Hansen's controversial sea level rise paper has now been published online . The Washington Post . "There is no doubt that the sea level rise, within the IPCC, is a very conservative number," says Greg Holland, a climate and hurricane researcher at the National Center for Atmospheric Research, who has also reviewed the Hansen study. "So the truth lies somewhere between IPCC and Jim." . 2017-09-11 . 2019-11-26 . https://web.archive.org/web/20191126005216/https://www.washingtonpost.com/news/energy-environment/wp/2015/07/23/controversial-sea-level-rise-paper-is-now-published-online/ . live .
- Zhang . Zhe . 7 November 2021 . Reviewing the elements of marine ice cliff instability . The International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2021) . California, United States . Journal of Physics: Conference Series . 2152 . 10.1088/1742-6596/2152/1/012057 . free .
- Wise . Matthew G. . Dowdeswell . Julian A. . Jakobsson . Martin . Larter . Robert D. . October 2017 . Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks . Nature . en . 550 . 7677 . 506–510 . 10.1038/nature24458 . 29072274 . 2017Natur.550..506W . 0028-0836 . https://web.archive.org/web/20200506155034/https://nora.nerc.ac.uk/id/eprint/514800/1/Nature_final_accepted_ms.pdf . May 6, 2020.
- Clerc . Fiona . Minchew . Brent M. . Behn . Mark D. . 21 October 2019 . Marine Ice Cliff Instability Mitigated by Slow Removal of Ice Shelves . Geophysical Research Letters . 50 . 4 . e2022GL102400 . 10.1029/2019GL084183 . 2019GeoRL..4612108C . American Geophysical Union . 1912/25343 . free . 3 June 2024 . 3 June 2024 . https://web.archive.org/web/20240603163939/https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019GL084183 . live .
- News: Collapse may not always be inevitable for marine ice cliffs. Perkins. Sid. 17 June 2021. 9 January 2023. ScienceNews. 23 March 2023. https://web.archive.org/web/20230323154132/https://www.sciencenews.org/article/climate-marine-ice-cliffs-sheets-collapse-not-inevitable-sea-level. live.
- Bassis . J. N. . Berg . B. . Crawford . A. J. . Benn . D. I. . 18 June 2021 . Transition to marine ice cliff instability controlled by ice thickness gradients and velocity . Science . en . 372 . 6548 . 1342–1344 . 2021Sci...372.1342B . 10.1126/science.abf6271 . 0036-8075 . 34140387 . free . 10023/23422 . 3 June 2024 . 3 June 2024 . https://web.archive.org/web/20240603163939/https://www.science.org/doi/10.1126/science.abf6271 . live .
- Crawford . Anna J. . Benn . Douglas I. . Todd . Joe . Åström . Jan A. . Bassis . Jeremy N. . Zwinger . Thomas . 11 May 2021 . Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization . Nature Communications . 12 . 1 . 2701 . 10.1038/s41467-021-23070-7 . 33976208 . 8113328 . 2021NatCo..12.2701C .
- Schlemm . Tanja . Feldmann . Johannes . Winkelmann . Ricarda . Levermann . Anders . 24 May 2022 . Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet . The Cryosphere . 16 . 5 . 1979–1996 . 10.5194/tc-16-1979-2022 . free. 2022TCry...16.1979S .
- Gilford . Daniel M. . Ashe . Erica L. . DeConto . Robert M. . Kopp . Robert E. . Pollard . David . Rovere . Alessio . 5 October 2020 . Could the Last Interglacial Constrain Projections of Future Antarctic Ice Mass Loss and Sea-Level Rise? . Journal of Geophysical Research: Earth Surface . 124 . 7 . 1899–1918 . 10.1029/2019JF005418 . 2020JGRF..12505418G . American Geophysical Union. 10278/3749063 . free .
- Barnett . Robert L. . Austermann . Jacqueline . Dyer . Blake . Telfer . Matt W. . Barlow . Natasha L. M. . Boulton . Sarah J. . Carr . Andrew S. . Creel . Roger . 15 September 2023 . Constraining the contribution of the Antarctic Ice Sheet to Last Interglacial sea level . Science Advances . 9 . 27 . 10.1126/sciadv.adf0198 . 37406130 . 2023SciA....9F.198B . 3 June 2024 . 3 June 2024 . https://web.archive.org/web/20240603163940/https://www.science.org/doi/10.1126/sciadv.adf0198 . live .
- Dumitru . Oana A. . Dyer . Blake . Austermann . Jacqueline . Sandstrom . Michael R. . Goldstein . Steven L. . D'Andrea . William J. . Cashman . Miranda . Creel . Roger . Bolge . Louise . Raymo . Maureen E. . 15 September 2023 . Last interglacial global mean sea level from high-precision U-series ages of Bahamian fossil coral reefs . Quaternary Science Reviews . 318 . 108287 . 10.1016/j.quascirev.2023.108287 . free . 2023QSRv..31808287D .
- Book: National Research Council . Advancing the Science of Climate Change . The National Academies Press . 2010 . 978-0-309-14588-6 . Washington, DC . 245 . 7 Sea Level Rise and the Coastal Environment . 10.17226/12782 . 2011-06-17 . http://books.nap.edu/openbook.php?record_id=12782&page=245 . 2015-08-13 . https://web.archive.org/web/20150813203235/http://books.nap.edu/openbook.php?record_id=12782 . live .
- Hansen . J. . Russell . G. . Lacis . A. . Fung . I. . Rind . D. . Stone . P. . 1985-08-30 . Climate Response Times: Dependence on Climate Sensitivity and Ocean Mixing . Science . en . 229 . 4716 . 857–859 . 10.1126/science.229.4716.857 . 17777925 . 1985Sci...229..857H . 0036-8075 . https://web.archive.org/web/20210327184018/https://pubs.giss.nasa.gov/docs/1985/1985_Hansen_ha09600g.pdf . March 27, 2021 . NASA.
- Mengel . Matthias . Nauels . Alexander . Rogelj . Joeri . Schleussner . Carl-Friedrich . 20 February 2018 . Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action . Nature Communications . 9 . 1 . 601 . 10.1038/s41467-018-02985-8 . 29463787 . 5820313 . 2018NatCo...9..601M.
- Bamber . Jonathan L. . Oppenheimer . Michael . Kopp . Robert E. . Aspinall . Willy P. . Cooke . Roger M. . May 2019 . Ice sheet contributions to future sea-level rise from structured expert judgment . Proceedings of the National Academy of Sciences . 116 . 23 . 11195–11200 . 2019PNAS..11611195B . 10.1073/pnas.1817205116 . 6561295 . 31110015 . free.
- Solomon . Susan . Plattner . Gian-Kasper . Knutti . Reto . Friedlingstein . Pierre . 10 February 2009 . Irreversible climate change due to carbon dioxide emissions . Proceedings of the National Academy of Sciences . 106 . 6 . 1704–1709 . 2009PNAS..106.1704S . 10.1073/pnas.0812721106 . 2632717 . 19179281 . free.
- Pattyn . Frank . Ritz . Catherine . Hanna . Edward . Asay-Davis . Xylar . DeConto . Rob . Durand . Gaël . Favier . Lionel . Fettweis . Xavier . Goelzer . Heiko . Golledge . Nicholas R. . Kuipers Munneke . Peter . 12 November 2018 . The Greenland and Antarctic ice sheets under 1.5 °C global warming . Nature Climate Change . 8 . 12 . 1053–1061 . 2018NatCC...8.1053P . 10.1038/s41558-018-0305-8 . Sophie . Nowicki . 91886763 . Lenaerts . Michiel . Payne . van den Broeke . Luke D. . Trusel . Hélène . Seroussi . Alexander . Robinson . Antony J. . Jan T. M. . 31 October 2019 . 7 March 2020 . https://web.archive.org/web/20200307041816/https://dipot.ulb.ac.be/dspace/bitstream/2013/278021/3/ReviewOnePointFive_v7.pdf . live .
- Clark . Peter U. . Shakun . Jeremy D. . Marcott . Shaun A. . Mix . Alan C. . Eby . Michael . April 2016 . Consequences of twenty-first-century policy for multi-millennial climate and sea-level change . Nature Climate Change . en . 6 . 4 . 360–369 . 10.1038/nclimate2923 . 2016NatCC...6..360C . 1758-6798 . https://web.archive.org/web/20200711054610/https://ir.library.oregonstate.edu/downloads/5999n523k . July 11, 2020 . Oregon State University.
- Winkelmann . Ricarda . Ricarda Winkelmann . Levermann . Anders . Ridgwell . Andy . Caldeira . Ken . 11 September 2015 . Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet . Science Advances . 1 . 8 . e1500589 . 2015SciA....1E0589W . 10.1126/sciadv.1500589 . 4643791 . 26601273.
- Web site: 2022 Sea Level Rise Technical Report . 2022-02-22 . oceanservice.noaa.gov . EN-US . 2022-11-29 . https://web.archive.org/web/20221129070303/https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.html#step4 . live .
- Rovere . Alessio . Stocchi . Paolo . Vacchi . Matteo . 2 August 2016 . Eustatic and Relative Sea Level Changes . Current Climate Change Reports . 2 . 4 . 221–231 . 10.1007/s40641-016-0045-7 . 2016CCCR....2..221R . 131866367 . free.
- Web site: Ocean Surface Topography from Space . https://web.archive.org/web/20110722010847/http://sealevel.jpl.nasa.gov/missions/topex/ . 2011-07-22 . NASA/JPL.
- Web site: Jason-3 Satellite – Mission . 2018-08-22 . www.nesdis.noaa.gov . 2019-09-06 . https://web.archive.org/web/20190906144644/https://www.nesdis.noaa.gov/jason-3/mission.html . live .
- Nerem . R. S. . Beckley . B. D. . Fasullo . J. T. . Hamlington . B. D. . Masters . D. . Mitchum . G. T. . 27 February 2018 . Climate-change–driven accelerated sea-level rise detected in the altimeter era . Proceedings of the National Academy of Sciences of the United States of America . 115 . 9 . 2022–2025 . 2018PNAS..115.2022N . 10.1073/pnas.1717312115 . 5834701 . 29440401 . free.
- Merrifield . Mark A. . Thompson . Philip R. . Lander . Mark . July 2012 . Multidecadal sea level anomalies and trends in the western tropical Pacific . Geophysical Research Letters . 39 . 13 . n/a . 2012GeoRL..3913602M . 10.1029/2012gl052032 . 128907116.
- Mantua . Nathan J. . Hare . Steven R. . Zhang . Yuan . Wallace . John M. . Francis . Robert C. . June 1997 . A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production . Bulletin of the American Meteorological Society . 78 . 6 . 1069–1079 . 1997BAMS...78.1069M . 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 . free.
- Book: Rhein . Monika . IPCC AR5 WGI . Rintoul . Stephan . Cambridge University Press . 2013 . New York . 285 . Observations: Ocean . Monika Rhein . 2018-08-26 . https://ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter03_FINAL.pdf . https://web.archive.org/web/20180613012554/https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter03_FINAL.pdf . 2018-06-13.
- Web site: Other Long Records not in the PSMSL Data Set . 11 May 2015 . PSMSL . 20 April 2020 . https://web.archive.org/web/20200420160218/https://www.psmsl.org/data/longrecords/ . live .
- Hunter . John . R. Coleman . D. Pugh . 2003 . The Sea Level at Port Arthur, Tasmania, from 1841 to the Present . Geophysical Research Letters . 30 . 7 . 1401 . 2003GeoRL..30.1401H . 10.1029/2002GL016813 . 55384210.
- Church, J.A. . White, N.J. . 2006 . 20th century acceleration in global sea-level rise . Geophysical Research Letters . 33 . 1 . L01602 . 2006GeoRL..33.1602C . 10.1.1.192.1792 . 10.1029/2005GL024826 . 129887186.
- Web site: Historical sea level changes: Last decades . 2018-08-26 . www.cmar.csiro.au . 2020-03-18 . https://web.archive.org/web/20200318220615/http://www.cmar.csiro.au/sealevel/sl_hist_last_decades.html . live .
- Web site: Neil . White . Historical Sea Level Changes . 25 April 2013 . CSIRO . 13 May 2020 . https://web.archive.org/web/20200513230040/http://www.cmar.csiro.au/sealevel/sl_hist_few_hundred.html . live .
- Web site: 18 November 2021 . Global and European sea level rise . European Environment Agency . 10 October 2022 . 27 August 2023 . https://web.archive.org/web/20230827001932/https://www.eea.europa.eu/ims/global-and-european-sea-level-rise . live .
- Web site: 2019-08-30 . Scientists discover evidence for past high-level sea rise . 2019-09-07 . phys.org . en-us . 2019-12-13 . https://web.archive.org/web/20191213220151/https://phys.org/news/2019-08-scientists-evidence-high-level-sea.html . live .
- Web site: Present CO2 levels caused 20-metre-sea-level rise in the past . Royal Netherlands Institute for Sea Research . 2020-02-03 . 2020-08-01 . https://web.archive.org/web/20200801030150/https://www.nioz.nl/en/news/present-co2-levels-caused-20-metre-sea-level-rise-in-the-past . live .
- Lambeck . Kurt . Rouby . Hélène . Purcell . Anthony . Sun . Yiying . Sambridge . Malcolm . 28 October 2014 . Sea level and global ice volumes from the Last Glacial Maximum to the Holocene . Proceedings of the National Academy of Sciences of the United States of America . 111 . 43 . 15296–15303 . 2014PNAS..11115296L . 10.1073/pnas.1411762111 . 4217469 . 25313072 . free.
- Trisos, C. H., I. O. Adelekan, E. Totin, A. Ayanlade, J. Efitre, A. Gemeda, K. Kalaba, C. Lennard, C. Masao, Y. Mgaya, G. Ngaruiya, D. Olago, N. P. Simpson, and S. Zakieldeen 2022: Chapter 9: Africa . In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. Pörtner, D.C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, US, pp. 2043–2121 .
- Mengel . Matthias . Levermann . Anders . Frieler . Katja . Robinson . Alexander . Marzeion . Ben . Winkelmann . Ricarda . Future sea level rise constrained by observations and long-term commitment . Proceedings of the National Academy of Sciences . 8 March 2016 . 113 . 10 . 2597–2602 . 10.1073/pnas.1500515113 . 4791025 . 26903648 . 2016PNAS..113.2597M . free.
- Web site: How would sea level change if all glaciers melted? . United States Geological Survey . 15 January 2024 . 31 July 2023 . https://web.archive.org/web/20230731120648/https://www.usgs.gov/faqs/how-would-sea-level-change-if-all-glaciers-melted . live .
- Cheng . Lijing . Foster . Grant . Hausfather . Zeke . Trenberth . Kevin E. . Abraham . John . 2022 . Improved Quantification of the Rate of Ocean Warming . Journal of Climate . 35 . 14 . 4827–4840 . 2022JCli...35.4827C . 10.1175/JCLI-D-21-0895.1 . free.
- Levitus, S. . Boyer, T. . Antonov, J. . Warming of the world ocean: 1955–2003 . 2005 . Geophysical Research Letters . 32 . 2 . 10.1029/2004GL021592 . free. 2005GeoRL..32.2604L.
- Web site: Deep Ocean Waters Are Trapping Vast Stores of Heat. Upton. John. 2016-01-19. Scientific American. 2019-02-01. 2020-06-30. https://web.archive.org/web/20200630010341/https://www.scientificamerican.com/article/deep-ocean-waters-are-trapping-vast-stores-of-heat/. live.
- Kuhlbrodt. T. Gregory. J.M.. 2012. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophysical Research Letters. 39. 18. L18608. 10.1029/2012GL052952. 2012GeoRL..3918608K. 19120823. 2019-10-31. 2020-07-31. https://web.archive.org/web/20200731215122/http://centaur.reading.ac.uk/28951/1/Kuhlbrodt_Gregory_GRL_2012.pdf. live.
- Web site: Antarctic Factsheet . British Antarctic Survey . 15 January 2024 . 15 January 2024 . https://web.archive.org/web/20240115190903/https://www.bas.ac.uk/science/science-and-society/education/antarctic-factsheet-geographical-statistics/ . live .
- Shepherd. Andrew. Ivins. Erik. 2012. A Reconciled Estimate of Ice-Sheet Mass Balance. Science. 338. 6111. 1183–1189. 2012Sci...338.1183S. 10.1126/science.1228102. 23197528. IMBIE team. 2060/20140006608. 32653236. 2020-11-10. 2023-01-23. https://web.archive.org/web/20230123141116/https://escholarship.org/uc/item/0vq404h7. live.
- Mass balance of the Antarctic Ice Sheet from 1992 to 2017 . Nature . 13 June 2018 . 558 . 7709 . 219–222 . 10.1038/s41586-018-0179-y . 2268/225208 . 29899482 . 2018Natur.558..219I . IMBIE team . 49188002 . free.
- News: Scott K. Johnson . 2018-06-13 . Latest estimate shows how much Antarctic ice has fallen into the sea . . 2018-06-15 . 2018-06-15 . https://web.archive.org/web/20180615083459/https://arstechnica.com/science/2018/06/latest-estimate-shows-how-much-antarctic-ice-has-fallen-into-the-sea/ . live .
- Web site: CNN. Antarctica ice melt has accelerated by 280% in the last 4 decades. 14 January 2019. January 14, 2019. Melting is taking place in the most vulnerable parts of Antarctica ... parts that hold the potential for multiple metres of sea level rise in the coming century or two. 30 June 2020. https://web.archive.org/web/20200630182349/https://edition.cnn.com/2019/01/14/world/climate-change-antarctica-ice-melt-twin-studies/index.html. live.
- Edwards . Tamsin L. . Nowicki . Sophie . Marzeion . Ben . Hock . Regine . Goelzer . Heiko . Seroussi . Hélène . 4 . 5 May 2021 . Projected land ice contributions to twenty-first-century sea level rise . Nature . 593 . 7857 . 74–82 . 2021Natur.593...74E . 10.1038/s41586-021-03302-y . 0028-0836 . 33953415 . 1874/412157 . https://web.archive.org/web/20210511000000/https://www.nature.com/articles/s41586-021-03302-y . 11 May 2021 . 233871029 . Alt URL https://eprints.whiterose.ac.uk/173870/
- Fretwell . P. . Pritchard . H. D. . Vaughan . D. G. . Bamber . J. L. . Barrand . N. E. . Bell . R. . Bianchi . C. . Bingham . R. G. . Blankenship . D. D. . Casassa . G. . Catania . G. . Callens . D. . Conway . H. . Cook . A. J. . Corr . H. F. J. . Damaske . D. . Damm . V. . Ferraccioli . F. . Forsberg . R. . Fujita . S. . Gim . Y. . Gogineni . P. . Griggs . J. A. . Hindmarsh . R. C. A. . Holmlund . P. . Holt . J. W. . Jacobel . R. W. . Jenkins . A. . Jokat . W. . Jordan . T. . King . E. C. . Kohler . J. . Krabill . W. . Riger-Kusk . M. . Langley . K. A. . Leitchenkov . G. . Leuschen . C. . Luyendyk . B. P. . Matsuoka . K. . Mouginot . J. . Nitsche . F. O. . Nogi . Y. . Nost . O. A. . Popov . S. V. . Rignot . E. . Rippin . D. M. . Rivera . A. . Roberts . J. . Ross . N. . Siegert . M. J. . Smith . A. M. . Steinhage . D. . Studinger . M. . Sun . B. . Tinto . B. K. . Welch . B. C. . Wilson . D. . Young . D. A. . Xiangbin . C. . Zirizzotti . A. . Bedmap2: improved ice bed, surface and thickness datasets for Antarctica . The Cryosphere . 28 February 2013 . 7 . 1 . 375–393 . 10.5194/tc-7-375-2013 . 2013TCry....7..375F . free. 1808/18763 . free .
- Singh . Hansi A. . Polvani . Lorenzo M. . 10 January 2020 . Low Antarctic continental climate sensitivity due to high ice sheet orography . npj Climate and Atmospheric Science . en . 3 . 1 . 39 . 10.1038/s41612-020-00143-w . 222179485 . free . 2020npCAS...3...39S.
- King . M. A. . Bingham . R. J. . Moore . P. . Whitehouse . P. L. . Bentley . M. J. . Milne . G. A. . 10.1038/nature11621 . Lower satellite-gravimetry estimates of Antarctic sea-level contribution . Nature . 491 . 7425 . 586–589 . 2012 . 23086145. 2012Natur.491..586K . 4414976.
- Web site: Antarctic Ice Mass Loss 2002-2023 . NASA . 7 July 2023 . 15 January 2024 . 18 January 2024 . https://web.archive.org/web/20240118033629/https://svs.gsfc.nasa.gov/31158 . live .
- Chen . J. L. . Wilson . C. R. . Blankenship . D. . Tapley . B. D. . 2009 . Accelerated Antarctic ice loss from satellite gravity measurements . Nature Geoscience . 2 . 12 . 859 . 10.1038/ngeo694 . 2009NatGe...2..859C . 130927366.
- Rignot . Eric . Mouginot . Jérémie . Scheuchl . Bernd . van den Broeke . Michiel . van Wessem . Melchior J. . Morlighem . Mathieu . Four decades of Antarctic Ice Sheet mass balance from 1979–2017 . Proceedings of the National Academy of Sciences . 22 January 2019 . 116 . 4 . 1095–1103 . 10.1073/pnas.1812883116 . 30642972 . 6347714 . 2019PNAS..116.1095R . free.
- Zwally . H. Jay . Robbins . John W. . Luthcke . Scott B. . Loomis . Bryant D. . Rémy . Frédérique . 29 March 2021 . Mass balance of the Antarctic ice sheet 1992–2016: reconciling results from GRACE gravimetry with ICESat, ERS1/2 and Envisat altimetry . Journal of Glaciology . en . 67 . 263 . 533–559 . 10.1017/jog.2021.8 . 2021JGlac..67..533Z . Although their methods of interpolation or extrapolation for areas with unobserved output velocities have an insufficient description for the evaluation of associated errors, such errors in previous results (Rignot and others, 2008) caused large overestimates of the mass losses as detailed in Zwally and Giovinetto (Zwally and Giovinetto, 2011).. free .
- Greene . Chad A. . Young . Duncan A. . Gwyther . David E. . Galton-Fenzi . Benjamin K. . Blankenship . Donald D. . Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing . The Cryosphere . 6 September 2018 . 12 . 9 . 2869–2882 . 10.5194/tc-12-2869-2018 . 2018TCry...12.2869G . free.
- Brancato . V. . Rignot . E. . Milillo . P. . Morlighem . M. . Mouginot . J. . An . L. . Scheuchl . B. . Jeong . S. . Rizzoli . P. . Bueso Bello . J.L. . Prats-Iraola . P. . Grounding line retreat of Denman Glacier, East Antarctica, measured with COSMO-SkyMed radar interferometry data . Geophysical Research Letters . 2020 . 47 . 7 . e2019GL086291. 0094-8276 . 10.1029/2019GL086291 . 2020GeoRL..4786291B . free.
- News: BBC. Climate change: Earth's deepest ice canyon vulnerable to melting. Amos. Jonathan. 2020-03-23. 2024-01-13. 2024-01-13. https://web.archive.org/web/20240113200523/https://www.bbc.com/news/science-environment-52007637. live.
- Greene . Chad A. . Blankenship . Donald D. . Gwyther . David E. . Silvano . Alessandro . van Wijk . Esmee . Wind causes Totten Ice Shelf melt and acceleration . Science Advances . 1 November 2017 . 3 . 11 . e1701681 . 10.1126/sciadv.1701681 . 29109976 . 5665591 . 2017SciA....3E1681G.
- Roberts . Jason . Galton-Fenzi . Benjamin K. . Paolo . Fernando S. . Donnelly . Claire . Gwyther . David E. . Padman . Laurie . Young . Duncan . Warner . Roland . Greenbaum . Jamin . Fricker . Helen A. . Payne . Antony J. . Cornford . Stephen . Le Brocq . Anne . van Ommen . Tas . Blankenship . Don . Siegert . Martin J. . Ocean forced variability of Totten Glacier mass loss . Geological Society, London, Special Publications . 2018 . 461 . 1 . 175–186 . 10.1144/sp461.6 . 2018GSLSP.461..175R . 55567382 . free. 10871/28918 . free .
- Greenbaum . J. S. . Blankenship . D. D. . Young . D. A. . Richter . T. G. . Roberts . J. L. . Aitken . A. R. A. . Legresy . B. . Schroeder . D. M. . Warner . R. C. . van Ommen . T. D. . Siegert . M. J. . Ocean access to a cavity beneath Totten Glacier in East Antarctica . Nature Geoscience . 16 March 2015 . 8 . 4 . 294–298 . 10.1038/ngeo2388 . 2015NatGe...8..294G.
- Pollard . David . DeConto . Robert M. . Alley . Richard B. . Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure . Earth and Planetary Science Letters . February 2015 . 412 . 112–121 . 10.1016/j.epsl.2014.12.035 . 2015E&PSL.412..112P . free.
- Pan . Linda . Powell . Evelyn M. . Latychev . Konstantin . Mitrovica . Jerry X. . Creveling . Jessica R. . Gomez . Natalya . Hoggard . Mark J. . Clark . Peter U. . 30 April 2021 . Rapid postglacial rebound amplifies global sea level rise following West Antarctic Ice Sheet collapse . Science Advances . 7 . 18 . 10.1126/sciadv.abf7787 . 33931453 . 8087405 . 2021SciA....7.7787P.
- Garbe . Julius . Albrecht . Torsten . Levermann . Anders . Donges . Jonathan F. . Winkelmann . Ricarda . 2020 . The hysteresis of the Antarctic Ice Sheet . Nature . 585 . 7826 . 538–544 . 10.1038/s41586-020-2727-5 . 32968257 . 2020Natur.585..538G . 221885420 . 2022-10-23 . 2023-08-19 . https://web.archive.org/web/20230819234302/https://www.nature.com/articles/s41586-020-2727-5 . live .
- Ludescher . Josef . Bunde . Armin . Franzke . Christian L. E. . Schellnhuber . Hans Joachim . Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica . Climate Dynamics . 16 April 2015 . 46 . 1–2 . 263–271 . 10.1007/s00382-015-2582-5 . 2016ClDy...46..263L . 131723421.
- Rignot . Eric . Bamber . Jonathan L. . van den Broeke . Michiel R. . Davis . Curt . Li . Yonghong . van de Berg . Willem Jan . van Meijgaard . Erik . Recent Antarctic ice mass loss from radar interferometry and regional climate modelling . Nature Geoscience . 13 January 2008 . 1 . 2 . 106–110 . 10.1038/ngeo102 . 2008NatGe...1..106R . 784105 . 11 December 2019 . 2 March 2020 . https://web.archive.org/web/20200302093403/https://escholarship.org/uc/item/26f4j9vv . live .
- Robel . Alexander A. . Seroussi . Hélène . Roe . Gerard H. . Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise . Proceedings of the National Academy of Sciences . 23 July 2019 . 116 . 30 . 14887–14892 . 10.1073/pnas.1904822116 . 31285345 . 6660720 . 2019PNAS..11614887R . free.
- Web site: Voosen. Paul. 13 December 2021. Ice shelf holding back keystone Antarctic glacier within years of failure. 2022-10-22. Science Magazine. en. Because Thwaites sits below sea level on ground that dips away from the coast, the warm water is likely to melt its way inland, beneath the glacier itself, freeing its underbelly from bedrock. A collapse of the entire glacier, which some researchers think is only centuries away, would raise global sea level by 65 centimeters.. 2023-04-18. https://web.archive.org/web/20230418221429/https://www.science.org/content/article/ice-shelf-holding-back-keystone-antarctic-glacier-within-years-failure. live.
- News: Amos . Jonathan . 13 December 2021 . Thwaites: Antarctic glacier heading for dramatic change . . London . December 14, 2021 . 22 January 2022 . https://web.archive.org/web/20220122115541/https://www.bbc.com/news/science-environment-59644494 . live .
- Web site: After Decades of Losing Ice, Antarctica Is Now Hemorrhaging It. The Atlantic. 2018. 2018-08-29. 2020-03-19. https://web.archive.org/web/20200319000046/https://www.theatlantic.com/science/archive/2018/06/after-decades-of-ice-loss-antarctica-is-now-hemorrhaging-mass/562748/. live.
- Web site: Marine ice sheet instability. AntarcticGlaciers.org. 2014. 2018-08-29. 2020-05-03. https://web.archive.org/web/20200503235803/http://www.antarcticglaciers.org/glaciers-and-climate/ice-ocean-interactions/marine-ice-sheets/. live.
- News: Kaplan . Sarah . December 13, 2021 . Crucial Antarctic ice shelf could fail within five years, scientists say . . Washington DC . December 14, 2021 . August 19, 2023 . https://web.archive.org/web/20230819193033/https://www.washingtonpost.com/climate-environment/2021/12/13/thwaites-glacier-melt-antarctica/ . live .
- Pattyn . Frank . Frank Pattyn . 16 July 2018 . The paradigm shift in Antarctic ice sheet modelling . Nature Communications . 9 . 1 . 2728 . 2018NatCo...9.2728P . 10.1038/s41467-018-05003-z . 6048022 . 30013142.
- Golledge . Nicholas R. . Keller . Elizabeth D. . Gomez . Natalya . Naughten . Kaitlin A. . Bernales . Jorge . Trusel . Luke D. . Edwards . Tamsin L. . 2019 . Global environmental consequences of twenty-first-century ice-sheet melt . Nature . en . 566 . 7742 . 65–72 . 10.1038/s41586-019-0889-9 . 30728520 . 2019Natur.566...65G . 59606358 . 1476-4687.
- Moorman . Ruth . Morrison . Adele K. . Hogg . Andrew McC . 2020-08-01 . Thermal Responses to Antarctic Ice Shelf Melt in an Eddy-Rich Global Ocean–Sea Ice Model . Journal of Climate . EN . 33 . 15 . 6599–6620 . 10.1175/JCLI-D-19-0846.1 . 2020JCli...33.6599M . 219487981 . 0894-8755.
- A. Naughten . Kaitlin . R. Holland . Paul . De Rydt . Jan . 23 October 2023 . Unavoidable future increase in West Antarctic ice-shelf melting over the twenty-first century . Nature Climate Change . 13 . 11 . 1222–1228 . 2023NatCC..13.1222N . 10.1038/s41558-023-01818-x . 264476246 . free.
- Fretwell . P. . et al . Bedmap2: improved ice bed, surface and thickness datasets for Antarctica . The Cryosphere . 7 . 1 . 390 . 28 February 2013 . 6 January 2014 . 10.5194/tc-7-375-2013 . 2013TCry....7..375F . 13129041 . free . 16 February 2020 . https://web.archive.org/web/20200216072841/https://www.the-cryosphere.net/7/375/2013/tc-7-375-2013.pdf . live.
- Hein . Andrew S. . Woodward . John . Marrero . Shasta M. . Dunning . Stuart A. . Steig . Eric J. . Freeman . Stewart P. H. T. . Stuart . Finlay M. . Winter . Kate . Westoby . Matthew J. . Sugden . David E. . 3 February 2016 . Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years . Nature Communications . 7 . 10325 . 10.1038/ncomms10325 . 26838462 . 4742792 . 2016NatCo...710325H.
- Bamber . J.L. . Riva . R.E.M. . Vermeersen . B.L.A. . LeBrocq . A.M. . Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet . Science . 14 May 2009 . 324 . 5929 . 901–903 . 10.1126/science.1169335 . 19443778 . 2009Sci...324..901B . 11083712.
- Armstrong McKay . David . Abrams . Jesse . Winkelmann . Ricarda . Sakschewski . Boris . Loriani . Sina . Fetzer . Ingo . Cornell . Sarah . Rockström . Johan . Staal . Arie . Lenton . Timothy . 9 September 2022 . Exceeding 1.5°C global warming could trigger multiple climate tipping points . Science . en . 377 . 6611 . eabn7950 . 10.1126/science.abn7950 . 36074831 . 10871/131584 . 252161375 . 0036-8075 . 23 October 2022 . 14 November 2022 . https://web.archive.org/web/20221114143835/https://www.science.org/doi/10.1126/science.abn7950 . live .
- Web site: Armstrong McKay . David . 9 September 2022 . Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer . 2 October 2022 . climatetippingpoints.info . en . 18 July 2023 . https://web.archive.org/web/20230718085705/https://climatetippingpoints.info/2022/09/09/climate-tipping-points-reassessment-explainer/ . live .
- Wolovick . Michael . Moore . John . Keefer . Bowie . 27 March 2023 . Feasibility of ice sheet conservation using seabed anchored curtains . PNAS Nexus . 2 . 3 . pgad053 . en . 10.1093/pnasnexus/pgad053 . 37007716 . 10062297 . 27 October 2023 . 6 January 2024 . https://web.archive.org/web/20240106123807/https://academic.oup.com/pnasnexus/article/2/4/pgad103/7087219 . live .
- Wolovick . Michael . Moore . John . Keefer . Bowie . 27 March 2023 . The potential for stabilizing Amundsen Sea glaciers via underwater curtains . PNAS Nexus . 2 . 4 . pgad103 . en . 10.1093/pnasnexus/pgad103 . 37091546 . 10118300 . 27 October 2023 . 6 January 2024 . https://web.archive.org/web/20240106123807/https://academic.oup.com/pnasnexus/article/2/4/pgad103/7087219 . live .
- Kjeldsen . Kristian K. . Korsgaard . Niels J. . Bjørk . Anders A. . Khan . Shfaqat A. . Box . Jason E. . Funder . Svend . Larsen . Nicolaj K. . Bamber . Jonathan L. . Colgan . William . van den Broeke . Michiel . Siggaard-Andersen . Marie-Louise . Nuth . Christopher . Schomacker . Anders . Andresen . Camilla S. . Willerslev . Eske . Kjær . Kurt H. . Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900 . Nature . 16 December 2015 . 528 . 7582 . 396–400 . 10.1038/nature16183 . 26672555 . 2015Natur.528..396K . 10852/50174 . 4468824 .
- Shepherd. Andrew. Ivins. Erik. Rignot. Eric. Smith. Ben. van den Broeke. Michiel. Velicogna. Isabella. Isabella Velicogna. Whitehouse. Pippa. Briggs. Kate. Joughin. Ian. Krinner. Gerhard. Nowicki. Sophie. 2020-03-12. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature. en. 579. 7798. 233–239. 10.1038/s41586-019-1855-2. 31822019. 2268/242139. 219146922. 1476-4687. 2020-05-11. 2022-10-23. https://web.archive.org/web/20221023151210/https://orbi.uliege.be/handle/2268/242139. live.
- Bamber . Jonathan L . Westaway . Richard M . Marzeion . Ben . Wouters . Bert . The land ice contribution to sea level during the satellite era . Environmental Research Letters . 1 June 2018 . 13 . 6 . 063008 . 10.1088/1748-9326/aac2f0 . 2018ERL....13f3008B . free.
- Web site: Greenland ice loss is at 'worse-case scenario' levels, study finds. 2019-12-19. UCI News. en-US. 2019-12-28. 2020-04-03. https://web.archive.org/web/20200403190232/https://news.uci.edu/2019/12/19/greenland-ice-loss-is-at-worse-case-scenario-levels-study-finds/. live.
- Noël . B. . van de Berg . W. J . Lhermitte . S. . Wouters . B. . Machguth . H. . Howat . I. . Citterio . M. . Moholdt . G. . Lenaerts . J. T. M. . van den Broeke . M. R. . A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps . Nature Communications . 31 March 2017 . 8 . 1 . 14730 . 10.1038/ncomms14730 . 28361871 . 5380968 . 2017NatCo...814730N.
- News: Warming Greenland ice sheet passes point of no return. 13 August 2020. 15 August 2020. Ohio State University. 5 September 2023. https://web.archive.org/web/20230905013943/https://news.osu.edu/warming-greenland-ice-sheet-passes-point-of-no-return/. live.
- King. Michalea D.. Howat. Ian M.. Candela. Salvatore G.. Noh. Myoung J.. Jeong. Seongsu. Noël. Brice P. Y.. van den Broeke. Michiel R.. Wouters. Bert. Negrete. Adelaide. 13 August 2020. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Communications Earth & Environment. en. 1. 1. 1–7. 10.1038/s43247-020-0001-2. 2020ComEE...1....1K . 2662-4435. free. Text and images are available under a Creative Commons Attribution 4.0 International License.
- Box . Jason E. . Hubbard . Alun . Bahr . David B. . Colgan . William T. . Fettweis . Xavier . Mankoff . Kenneth D. . Wehrlé . Adrien . Noël . Brice . van den Broeke . Michiel R. . Wouters . Bert . Bjørk . Anders A. . Fausto . Robert S. . Greenland ice sheet climate disequilibrium and committed sea-level rise . Nature Climate Change . 29 August 2022 . 12 . 9 . 808–813 . 10.1038/s41558-022-01441-2 . 2022NatCC..12..808B . 251912711 . free .
- Irvalı. Nil. Galaasen. Eirik V.. Ninnemann. Ulysses S.. Rosenthal. Yair. Born. Andreas. Kleiven. Helga (Kikki) F.. 18 December 2019 . A low climate threshold for south Greenland Ice Sheet demise during the Late Pleistocene. Proceedings of the National Academy of Sciences. 117. 1. 190–195. en. 10.1073/pnas.1911902116. 0027-8424. 31871153. 6955352. free.
- Christ . Andrew J. . Bierman . Paul R. . Schaefer . Joerg M.. Dahl-Jensen . Dorthe . Steffensen . Jørgen P. . Corbett . Lee B. . Peteet . Dorothy M. . Thomas . Elizabeth K. . Steig . Eric J. . Rittenour . Tammy M. . Tison . Jean-Louis . Blard . Pierre-Henri . Perdrial . Nicolas . Dethier . David P. . Lini . Andrea . Hidy . Alan J. . Caffee . Marc W. . Southon . John . A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century . Proceedings of the National Academy of Sciences of the United States. 30 March 2021 . 118 . 13 . e2021442118 . 10.1073/pnas.2021442118 . 33723012 . 8020747 . 2021PNAS..11821442C . free.
- Robinson . Alexander . Calov . Reinhard . Ganopolski . Andrey . Multistability and critical thresholds of the Greenland ice sheet . Nature Climate Change . 11 March 2012 . 2 . 6 . 429–432 . 10.1038/nclimate1449 . 2012NatCC...2..429R.
- Bochow . Nils . Poltronieri . Anna . Robinson . Alexander . Montoya . Marisa . Rypdal . Martin . Boers . Niklas . 18 October 2023 . Overshooting the critical threshold for the Greenland ice sheet . Nature . 622 . 7983 . 528–536 . 2023Natur.622..528B . 10.1038/s41586-023-06503-9 . 10584691 . 37853149.
- Aschwanden . Andy . Fahnestock . Mark A. . Truffer . Martin . Brinkerhoff . Douglas J. . Hock . Regine . Khroulev . Constantine . Mottram . Ruth . Khan . S. Abbas . 19 June 2019 . Contribution of the Greenland Ice Sheet to sea level over the next millennium . Science Advances . 5 . 6 . 218–222 . EN . 10.1126/sciadv.aav9396 . 31223652 . 6584365 . 2019SciA....5.9396A.
- Huss . Matthias . Hock . Regine . A new model for global glacier change and sea-level rise . Frontiers in Earth Science . 30 September 2015 . 3 . 54 . 10.3389/feart.2015.00054 . 2015FrEaS...3...54H . 3256381 . free. 20.500.11850/107708 . free .
- Radić . Valentina . Hock . Regine . Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise . Nature Geoscience . 9 January 2011 . 4 . 2 . 91–94 . 10.1038/ngeo1052 . 2011NatGe...4...91R.
- 10.7265/N52N506F . 2002 . Dyurgerov . Mark . Glacier Mass Balance and Regime Measurements and Analysis, 1945-2003.
- Rounce . David R. . Hock . Regine . Maussion . Fabien . Hugonnet . Romain . Kochtitzky . William . Huss . Matthias . Berthier . Etienne . Brinkerhoff . Douglas . Compagno . Loris . Copland . Luke . Farinotti . Daniel . Menounos . Brian . McNabb . Robert W. . 5 January 2023 . Global glacier change in the 21st century: Every increase in temperature matters . Science . en . 79 . 6627 . 78–83 . 10.1126/science.abo1324 . 36603094 . 2023Sci...379...78R . 255441012 . 10852/108771 . free . 8 January 2023 . 12 January 2023 . https://web.archive.org/web/20230112211316/https://www.science.org/doi/10.1126/science.abo1324 . live .
- Noerdlinger . Peter D. . Brower . Kay R. . The melting of floating ice raises the ocean level . Geophysical Journal International . July 2007 . 170 . 1 . 145–150 . 10.1111/j.1365-246X.2007.03472.x . 2007GeoJI.170..145N . free.
- Wada . Yoshihide . Reager . John T. . Chao . Benjamin F. . Wang . Jida . Lo . Min-Hui . Song . Chunqiao . Li . Yuwen . Gardner . Alex S. . Recent Changes in Land Water Storage and its Contribution to Sea Level Variations . Surveys in Geophysics . 15 November 2016 . 38 . 1 . 131–152 . 10.1007/s10712-016-9399-6 . 32269399 . 7115037.
- Seo . Ki-Weon . Ryu . Dongryeol . Eom . Jooyoung . Jeon . Taewhan . Kim . Jae-Seung . Youm . Kookhyoun . Chen . Jianli . Wilson . Clark R. . Drift of Earth's Pole Confirms Groundwater Depletion as a Significant Contributor to Global Sea Level Rise 1993–2010 . Geophysical Research Letters . 15 June 2023 . 50 . 12 . e2023GL103509 . 10.1029/2023GL103509 . 2023GeoRL..5003509S . 259275991 . free .
- TAR Climate Change 2001: The Scientific Basis. 2001. International Panel on Climate Change, Cambridge University Press. 0521-80767-0. 23 July 2021. 5 December 2021. https://web.archive.org/web/20211205084026/https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf. live.
- Wu. Tao. October 2021. Quantifying coastal flood vulnerability for climate adaptation policy using principal component analysis. Ecological Indicators. en. 129. 108006. 10.1016/j.ecolind.2021.108006. 2021EcInd.12908006W. free.
- Kulp . Scott A. . Strauss . Benjamin H. . New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding . Nature Communications . 29 October 2019 . 10 . 1 . 4844 . 10.1038/s41467-019-12808-z . 31664024 . 6820795 . 2019NatCo..10.4844K.
- News: 300 Million People Worldwide Could Suffer Yearly Flooding by 2050. Rosane. Olivia. October 30, 2019. 31 October 2019. Ecowatch. 9 December 2019. https://web.archive.org/web/20191209224048/https://www.ecowatch.com/sea-level-rise-predictions-2641159739.html. live.
- McGranahan . Gordon . Balk . Deborah . Anderson . Bridget . The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones . Environment and Urbanization . 29 June 2016 . 19 . 1 . 17–37 . 10.1177/0956247807076960 . 154588933.
- News: Sengupta . Somini . Photographer: Chang W. Lee . A Crisis Right Now: San Francisco and Manila Face Rising Seas . 4 March 2020 . The New York Times . 13 February 2020 . 7 May 2020 . https://web.archive.org/web/20200507112647/https://www.nytimes.com/interactive/2020/02/13/climate/manila-san-francisco-sea-level-rise.html . live .
- News: Holder. Josh. Kommenda. Niko. Watts. Jonathan. 3 November 2017. The three-degree world: cities that will be drowned by global warming. The Guardian. 2018-12-28. 2020-01-03. https://web.archive.org/web/20200103081510/https://www.theguardian.com/cities/ng-interactive/2017/nov/03/three-degree-world-cities-drowned-global-warming. live.
- Web site: Storer. Rhi. 2021-06-29. Up to 410 million people at risk from sea level rises – study. 2021-07-01. The Guardian. en. 2023-05-18. https://web.archive.org/web/20230518021028/https://www.theguardian.com/environment/2021/jun/29/risk-from-sea-level-rises-unless-emissions-reduced. live.
- Hooijer. A.. Vernimmen. R.. 2021-06-29. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nature Communications. en. 12. 1. 3592. 10.1038/s41467-021-23810-9. 34188026. 8242013. 2021NatCo..12.3592H. 2041-1723.
- News: Carrington. Damian. 14 February 2023. Rising seas threaten 'mass exodus on a biblical scale', UN chief warns. The Guardian. 2023-02-25. 2023-07-06. https://web.archive.org/web/20230706040859/https://www.theguardian.com/environment/2023/feb/14/rising-seas-threaten-mass-exodus-on-a-biblical-scale-un-chief-warns. live.
- Xia. Wenyi. Lindsey. Robin. October 2021. Port adaptation to climate change and capacity investments under uncertainty. Transportation Research Part B: Methodological. en. 152. 180–204. 10.1016/j.trb.2021.08.009. 2021TRPB..152..180X. 239647501. 2021-12-17. 2023-01-02. https://web.archive.org/web/20230102220943/https://linkinghub.elsevier.com/retrieve/pii/S0191261521001600. live.
- Web site: Chapter 4: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities — Special Report on the Ocean and Cryosphere in a Changing Climate. 2021-12-17. 2023-09-02. https://web.archive.org/web/20230902021918/https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands-coasts-and-communities/. live.
- Web site: Nagothu . Udaya Sekhar . 2017-01-18 . Food security threatened by sea-level rise . 2018-10-21 . Nibio . 2020-07-31 . https://web.archive.org/web/20200731214557/https://www.nibio.no/nyheter/food-security-threatened-by-sea-level-rise . live .
- Web site: Sea Level Rise. https://web.archive.org/web/20170117004107/http://www.nationalgeographic.com/environment/global-warming/sea-level-rise/. January 17, 2017. January 13, 2017. National Geographic.
- Web site: Ghost forests are eerie evidence of rising seas. 18 September 2016. Grist.org. 2017-05-17. 2023-03-29. https://web.archive.org/web/20230329190328/https://grist.org/article/ghost-forests-are-eerie-evidence-of-rising-seas/. live.
- Web site: How Rising Seas Are Killing Southern U.S. Woodlands - Yale E360. e360.yale.edu. 2017-05-17. 2023-08-19. https://web.archive.org/web/20230819015407/https://e360.yale.edu/features/ghost_forest_rising_sea_levels_killing_coastal_woodlands. live.
- Rivas . Marga L. . Rodríguez-Caballero . Emilio . Esteban . Nicole . Carpio . Antonio J. . Barrera-Vilarmau . Barbara . Fuentes . Mariana M. P. B. . Robertson . Katharine . Azanza . Julia . León . Yolanda . Ortega . Zaida . 2023-04-20 . Uncertain future for global sea turtle populations in face of sea level rise . Scientific Reports . en . 13 . 1 . 5277 . 10.1038/s41598-023-31467-1 . 37081050 . 10119306 . 2023NatSR..13.5277R . 2045-2322.
- Web site: Extinct: Bramble Cay melomys. Smith. Lauren. 2016-06-15. Australian Geographic. 2016-06-17. 2020-08-17. https://web.archive.org/web/20200817201358/https://www.australiangeographic.com.au/news/2016/06/extinct-bramble-cay-melomys/. live.
- Web site: 'Our little brown rat': first climate change-caused mammal extinction. Hannam. Peter. 2019-02-19. The Sydney Morning Herald. en. 2019-06-25. 2020-06-17. https://web.archive.org/web/20200617054703/https://www.smh.com.au/environment/climate-change/our-little-brown-rat-first-climate-change-caused-mammal-extinction-20190219-p50yry.html. live.
- Web site: Sea level rise poses a major threat to coastal ecosystems and the biota they support. 2015. birdlife.org. Birdlife International. 2018-09-06. 2019-05-20. https://web.archive.org/web/20190520130929/http://datazone.birdlife.org/sea-level-rise-poses-a-major-threat-to-coastal-ecosystems-and-the-biota-they-support. live.
- Pontee . Nigel . Defining coastal squeeze: A discussion . Ocean & Coastal Management . November 2013 . 84 . 204–207 . 10.1016/j.ocecoaman.2013.07.010 . 2013OCM....84..204P.
- Web site: Mangroves - Northland Regional Council. www.nrc.govt.nz. 2020-10-28. 2023-06-02. https://web.archive.org/web/20230602174756/https://www.nrc.govt.nz/for-schools/school-information-packs/mangroves. live.
- Kumara . M. P. . Jayatissa . L. P. . Krauss . K. W. . Phillips . D. H. . Huxham . M. . High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise . Oecologia . 545–553 . 2010. 164 . 2 . 10.1007/s00442-010-1705-2 . 40864709 . 20593198 . 2010Oecol.164..545K . 6929383.
- Krauss . Ken W. . McKee . Karen L. . Lovelock . Catherine E. . Cahoon . Donald R. . Saintilan . Neil . Reef . Ruth . Chen . Luzhen . How mangrove forests adjust to rising sea level . New Phytologist . April 2014 . 202 . 1 . 19–34 . 10.1111/nph.12605 . 24251960 . 2019-10-31 . 2020-08-06 . https://web.archive.org/web/20200806191108/https://digitalcommons.unl.edu/usgsstaffpub/986/ . live .
- Soares. M.L.G.. 2009. A Conceptual Model for the Responses of Mangrove Forests to Sea Level Rise. Journal of Coastal Research. 267–271. 25737579.
- Crosby . Sarah C. . Sax . Dov F. . Palmer . Megan E. . Booth . Harriet S. . Deegan . Linda A. . Bertness . Mark D. . Leslie . Heather M. . Salt marsh persistence is threatened by predicted sea-level rise . Estuarine, Coastal and Shelf Science . November 2016 . 181 . 93–99 . 10.1016/j.ecss.2016.08.018 . 2016ECSS..181...93C . free.
- Web site: Mangroves for coastal defence. Guidelines for coastal managers & policy makers. Spalding, M.. McIvor, A.. 2014. Wetlands International and The Nature Conservancy. Tonneijck, F.H.. Tol, S.. van Eijk, P.. 2018-09-07. 2019-11-12. https://web.archive.org/web/20191112063642/http://www.nature.org/media/oceansandcoasts/mangroves-for-coastal-defence.pdf. live.
- Weston . Nathaniel B. . Declining Sediments and Rising Seas: an Unfortunate Convergence for Tidal Wetlands . Estuaries and Coasts . 16 July 2013 . 37 . 1 . 1–23 . 10.1007/s12237-013-9654-8 . 128615335.
- Book: Climate Change 2014: Impacts, Adaptation, and Vulnerability.. Wong. Poh Poh. Losado. I.J.. Gattuso. J.-P.. Hinkel. Jochen. Cambridge University Press. 2014. New York. Coastal Systems and Low-Lying Areas. http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap5_FINAL.pdf. 2018-10-07. 2018-11-23. https://web.archive.org/web/20181123125554/http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap5_FINAL.pdf.
- Rovere . Alessio . Stocchi . Paolo . Vacchi . Matteo . 2 August 2016 . Eustatic and Relative Sea Level Changes . Current Climate Change Reports . 2 . 4 . 221–231 . 2016CCCR....2..221R . 10.1007/s40641-016-0045-7 . 131866367 . free.
- News: 2016 . Why the U.S. East Coast could be a major 'hotspot' for rising seas . live . https://web.archive.org/web/20200331080306/https://www.washingtonpost.com/news/energy-environment/wp/2016/02/01/why-the-u-s-east-coast-could-be-a-major-hotspot-for-sea-level-rise/ . 2020-03-31 . 2016-02-04 . The Washington Post.
- News: Yin . Jianjun . Griffies . Stephen . amp . March 25, 2015 . Extreme sea level rise event linked to AMOC downturn . live . https://web.archive.org/web/20230127023140/https://usclivar.org/research-highlights/extreme-sea-level-rise-event-linked-amoc-downturn . January 27, 2023 . November 23, 2021 . CLIVAR.
- Tessler . Z. D. . Vörösmarty . C. J. . Grossberg . M. . Gladkova . I. . Aizenman . H. . Syvitski . J. P. M. . Foufoula-Georgiou . E. . 2015-08-07 . Profiling risk and sustainability in coastal deltas of the world . live . Science . 349 . 6248 . 638–643 . 2015Sci...349..638T . 10.1126/science.aab3574 . 0036-8075 . 26250684 . 12295500 . https://web.archive.org/web/20180724000157/https://cloudfront.escholarship.org/dist/prd/content/qt46n8t5mp/qt46n8t5mp.pdf . 2018-07-24 . 2019-09-02.
- Book: Bucx, Tom . Comparative assessment of the vulnerability and resilience of 10 deltas: synthesis report . 2010 . Deltares . 978-94-90070-39-7 . Delft, Netherlands . 768078077.
- Cazenave . Anny . Anny Cazenave . Nicholls . Robert J. . 2010 . Sea-Level Rise and Its Impact on Coastal Zones . Science . 328 . 5985 . 1517–1520 . 2010Sci...328.1517N . 10.1126/science.1185782 . 0036-8075 . 20558707 . 199393735.
- Cooley, S., D. Schoeman, L. Bopp, P. Boyd, S. Donner, D.Y. Ghebrehiwet, S.-I. Ito, W. Kiessling, P. Martinetto, E. Ojea, M.-F. Racault, B. Rost, and M. Skern-Mauritzen, 2022: Ocean and Coastal Ecosystems and their Services (Chapter 3) . In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press. - Cross-Chapter Box SLR: Sea Level Rise
- Dasgupta . Susmita . Wheeler . David . Bandyopadhyay . Sunando . Ghosh . Santadas . Roy . Utpal . February 2022 . Coastal dilemma: Climate change, public assistance and population displacement . World Development . en . 150 . 105707 . 10.1016/j.worlddev.2021.105707 . 0305-750X . 244585347 . 2021-12-17 . 2022-11-10 . https://web.archive.org/web/20221110212423/https://linkinghub.elsevier.com/retrieve/pii/S0305750X21003223 . live .
- Web site: 2 May 2016 . Climate Adaptation and Sea Level Rise . US EPA, Climate Change Adaptation Resource Center (ARC-X) . en . 13 March 2020 . 8 May 2020 . https://web.archive.org/web/20200508055630/https://www.epa.gov/arc-x/climate-adaptation-and-sea-level-rise . live .
- Fletcher . Cameron . 2013 . Costs and coasts: an empirical assessment of physical and institutional climate adaptation pathways . Apo . 2019-10-31 . 2020-07-31 . https://web.archive.org/web/20200731224002/https://apo.org.au/node/34006 . live .
- Sovacool . Benjamin K. . 2011 . Hard and soft paths for climate change adaptation . dead . Climate Policy . 11 . 4 . 1177–1183 . 2011CliPo..11.1177S . 10.1080/14693062.2011.579315 . 153384574 . https://web.archive.org/web/20200710010054/https://www.adaptation-undp.org/sites/default/files/downloads/sovacool-cp-hardsoft.pdf . 2020-07-10 . 2018-09-02.
- Web site: 18 August 2013 . Coastal cities face rising risk of flood losses, study says . 17 April 2023 . Phys.org . 22 April 2023 . https://web.archive.org/web/20230422005012/https://phys.org/news/2013-08-coastal-cities-losses.html . live .
- Hallegatte . Stephane . Green . Colin . Nicholls . Robert J. . Corfee-Morlot . Jan . 18 August 2013 . Future flood losses in major coastal cities . Nature Climate Change . en . 3 . 9 . 802–806 . 2013NatCC...3..802H . 10.1038/nclimate1979 . 17 April 2023 . 26 August 2023 . https://web.archive.org/web/20230826224546/https://www.nature.com/articles/nclimate1979 . live .
- Bachner . Gabriel . Lincke . Daniel . Hinkel . Jochen . 29 September 2022 . The macroeconomic effects of adapting to high-end sea-level rise via protection and migration . Nature Communications . en . 13 . 1 . 5705 . 2022NatCo..13.5705B . 10.1038/s41467-022-33043-z . 9522673 . 36175422.
- Hirschfeld . Daniella . Behar . David . Nicholls . Robert J. . Cahill . Niamh . James . Thomas . Horton . Benjamin P. . Portman . Michelle E. . Bell . Rob . Campo . Matthew . Esteban . Miguel . Goble . Bronwyn . Rahman . Munsur . Appeaning Addo . Kwasi . Chundeli . Faiz Ahmed . Aunger . Monique . 3 April 2023 . Global survey shows planners use widely varying sea-level rise projections for coastal adaptation . Communications Earth & Environment . en . 4 . 1 . 102 . 2023ComEE...4..102H . 10.1038/s43247-023-00703-x . free . Babitsky . Orly . Beal . Anders . Boyle . Ray . Fang . Jiayi . Gohar . Amir . Hanson . Susan . Karamesines . Saul . Kim . M. J. . Lohmann . Hilary . McInnes . Kathy . Mimura . Nobuo . Ramsay . Doug . Wenger . Landis . Yokoki . Hiromune. 38665203 . 11041751. Text and images are available under a Creative Commons Attribution 4.0 International License.
- Garner . Andra J. . Sosa . Sarah E. . Tan . Fangyi . Tan . Christabel Wan Jie . Garner . Gregory G. . Horton . Benjamin P. . 23 January 2023 . Evaluating Knowledge Gaps in Sea-Level Rise Assessments From the United States . Earth's Future . 11 . 2 . e2022EF003187 . 2023EaFut..1103187G . 10.1029/2022EF003187 . 256227421. free .
- News: Houses claimed by the canal: life on Egypt's climate change frontline. Michaelson. Ruth. 25 August 2018. The Guardian. 30 August 2018. 1 August 2020. https://web.archive.org/web/20200801005257/https://www.theguardian.com/global-development/2018/aug/29/alexandria-little-venice-egypt-climate-change-frontline. live.
- McLeman. Robert. 2018. Migration and displacement risks due to mean sea-level rise. Bulletin of the Atomic Scientists. 74. 3. 148–154. 10.1080/00963402.2018.1461951. 0096-3402. 2018BuAtS..74c.148M. 150179939.
- De Lellis . Pietro . Marín . Manuel Ruiz . Porfiri . Maurizio . 29 March 2021 . Modeling Human Migration Under Environmental Change: A Case Study of the Effect of Sea Level Rise in Bangladesh . Earth's Future . 9 . 4 . e2020EF001931 . 10.1029/2020EF001931 . 2021EaFut...901931D . 10317/13078 . 233626963 . 27 October 2022 . 27 October 2022 . https://web.archive.org/web/20221027180934/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020EF001931 . live .
- Web site: Potential Impacts of Sea-Level Rise on Populations and Agriculture. www.fao.org. 2018-10-21. 2020-04-18. https://web.archive.org/web/20200418035608/http://www.fao.org/nr/climpag/pub/eire0047_en.asp.
- Shaw, R., Y. Luo, T. S. Cheong, S. Abdul Halim, S. Chaturvedi, M. Hashizume, G. E. Insarov, Y. Ishikawa, M. Jafari, A. Kitoh, J. Pulhin, C. Singh, K. Vasant, and Z. Zhang, 2022: Chapter 10: Asia . In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, US, pp. 1457–1579. .
- Erkens. G.. Bucx. T.. Dam. R.. de Lange. G.. Lambert. J.. 2015-11-12. Sinking coastal cities. Proceedings of the International Association of Hydrological Sciences. en. 372. 189–198. 10.5194/piahs-372-189-2015. 2015PIAHS.372..189E. 2199-899X. free. 2021-02-03. 2023-03-11. https://web.archive.org/web/20230311121820/https://piahs.copernicus.org/articles/372/189/2015/. live.
- Abidin . Hasanuddin Z. . Andreas . Heri . Gumilar . Irwan . Fukuda . Yoichi . Pohan . Yusuf E. . Deguchi . T. . Land subsidence of Jakarta (Indonesia) and its relation with urban development . Natural Hazards . 11 June 2011 . 59 . 3 . 1753–1771 . 10.1007/s11069-011-9866-9 . 2011NatHa..59.1753A . 129557182.
- News: As seas rise, Indonesia is moving its capital city. Other cities should take note.. Englander. John. 3 May 2019. The Washington Post. 31 August 2019. 13 May 2020. https://web.archive.org/web/20200513144058/https://www.washingtonpost.com/opinions/2019/05/03/seas-rise-indonesia-is-moving-its-capital-city-other-cities-should-take-note/. live.
- Lawrence, J., B. Mackey, F. Chiew, M.J. Costello, K. Hennessy, N. Lansbury, U.B. Nidumolu, G. Pecl, L. Rickards, N. Tapper,A. Woodward, and A. Wreford, 2022: Chapter 11: Australasia . In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, US, pp. 1581–1688,|doi=10.1017/9781009325844.013
- Castellanos, E., M.F. Lemos, L. Astigarraga, N. Chacón, N. Cuvi, C. Huggel, L. Miranda, M. Moncassim Vale, J.P. Ometto,P.L. Peri, J.C. Postigo, L. Ramajo, L. Roco, and M. Rusticucci, 2022: Chapter 12: Central and South America . In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, US, pp. 1689–1816
- Ballesteros . Caridad . Jiménez . José A. . Valdemoro . Herminia I. . Bosom . Eva . 7 September 2017 . Erosion consequences on beach functions along the Maresme coast (NW Mediterranean, Spain) . Natural Hazards . en . 90 . 173–195 . 10.1007/s11069-017-3038-5 . 135328414 . free .
- Ietto . Fabio . Cantasano . Nicola . Pellicone . Gaetano . 11 April 2018 . A New Coastal Erosion Risk Assessment Indicator: Application to the Calabria Tyrrhenian Littoral (Southern Italy) . Environmental Processes . en . 5 . 2 . 201–223 . 10.1007/s40710-018-0295-6 . 2018EProc...5..201I . 134889581 . 17 April 2023 . 22 April 2023 . https://web.archive.org/web/20230422111655/https://link.springer.com/article/10.1007/s40710-018-0295-6 . live .
- Ferreira . A. M. . Coelho . C. . Narra . P. . 13 October 2020 . Coastal erosion risk assessment to discuss mitigation strategies: Barra-Vagueira, Portugal . Natural Hazards . en . 105 . 1069–1107 . 10.1007/s11069-020-04349-2 . 222318289 . 17 April 2023 . 21 April 2023 . https://web.archive.org/web/20230421025813/https://link.springer.com/article/10.1007/s11069-020-04349-2 . live .
- Rivero . Ofelia Yocasta . Margheritini . Lucia . Frigaard . Peter . 4 February 2021 . Accumulated effects of chronic, acute and man-induced erosion in Nørlev strand on the Danish west coast . Journal of Coastal Conservation . en . 25 . 1 . 24 . 10.1007/s11852-021-00812-9 . 2021JCC....25...24R . 231794192 . free .
- Tierolf. Lars. Haer. Toon Haer. Wouter Botzen. W. J.. de Bruijn. Jens A. . Ton . Marijn J. . Reimann. Lena. Aerts . Jeroen C. J. H. . 13 March 2023. A coupled agent-based model for France for simulating adaptation and migration decisions under future coastal flood risk. Scientific Reports. 13 . 1 . 4176 . 10.1038/s41598-023-31351-y . 36914726 . 10011601 . 2023NatSR..13.4176T.
- News: Calma . Justine . Venice's historic flooding blamed on human failure and climate change . 17 November 2019 . The Verge . November 14, 2019 . 1 August 2020 . https://web.archive.org/web/20200801002415/https://www.theverge.com/2019/11/14/20963878/venice-high-tide-climate-change-flood-barrier-sea-levels . live .
- News: Shepherd . Marshall . Venice Flooding Reveals A Real Hoax About Climate Change - Framing It As "Either/Or" . 17 November 2019 . Forbes . 16 November 2019 . 2 May 2020 . https://web.archive.org/web/20200502135528/https://www.forbes.com/sites/marshallshepherd/2019/11/16/venice-flooding-reveals-a-real-hoax-about-climate-changeframing-it-as-eitheror/ . live .
- van der Hurk. Bart. Bisaro. Alexander. Haasnoot. Marjolijn. Nicholls. Robert J. . Rehdanz . Katrin . Stuparu. Dana. 28 January 2022. Living with sea-level rise in North-West Europe: Science-policy challenges across scales. Climate Risk Management. 35. 100403 . 10.1016/j.crm.2022.100403 . 2022CliRM..3500403V . 246354121.
- Howard . Tom . Palmer . Matthew D . Bricheno . Lucy M . 18 September 2019 . Contributions to 21st century projections of extreme sea-level change around the UK . Environmental Research Communications . en . 1 . 9 . 095002 . 10.1088/2515-7620/ab42d7 . 2019ERCom...1i5002H . 203120550 . 17 April 2023 . 21 April 2023 . https://web.archive.org/web/20230421170159/https://iopscience.iop.org/article/10.1088/2515-7620/ab42d7 . live .
- News: The Dutch Have Solutions to Rising Seas. The World Is Watching.. Kimmelman. Michael. 2017-06-15. The New York Times. 2019-02-02. Haner. Josh. 0362-4331.
- News: Dutch draw up drastic measures to defend coast against rising seas. 3 September 2008. The New York Times. 25 February 2017. 21 August 2017. https://web.archive.org/web/20170821050301/http://www.nytimes.com/2008/09/03/news/03iht-03dutch.15877468.html. live.
- News: Rising Sea Levels Threaten Netherlands . 28 October 2022 . National Post . Agence France-Presse . September 4, 2008 . Toronto . AL12 . 28 October 2022 . https://web.archive.org/web/20221028180908/https://www.newspapers.com/image/514725270/ . live .
- Web site: 2020-02-10. Florida Coastal Flooding Maps: Residents Deny Predicted Risks to Their Property. 2021-01-31. EcoWatch. en. 2023-06-04. https://web.archive.org/web/20230604152002/https://www.ecowatch.com/florida-coastal-flooding-maps-2645087745.html. live.
- Sweet & Park . Increased nuisance flooding along the coasts of the United States due to sea level rise: Past and future . Geophysical Research Letters . 2015 . 42 . 22 . 9846–9852 . 10.1002/2015GL066072 . 2015GeoRL..42.9846M . 19624347.
- Web site: High Tide Flooding . NOAA . 10 July 2023 . 19 August 2023 . https://web.archive.org/web/20230819201149/https://coast.noaa.gov/states/fast-facts/recurrent-tidal-flooding.html . live .
- Web site: Climate Change, Sea Level Rise Spurring Beach Erosion. 2012. Climate Central. 2018-08-20. 2020-08-06. https://web.archive.org/web/20200806010206/https://www.climatecentral.org/news/its-beach-season-enjoy-it-while-you-can. live.
- Carpenter. Adam T.. 2020-05-04. Public priorities on locally-driven sea level rise planning on the East Coast of the United States. PeerJ. en. 8. e9044. 10.7717/peerj.9044. 32411525. 7204830. 2167-8359 . free.
- Jasechko . Scott J.. Perrone . Debra . Seybold . Hansjörg . Fan . Ying . Kirchner . James W. . Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion . 26 June 2020 . Nature Communications . 11 . 1 . 3229 . 10.1038/s41467-020-17038-2 . 32591535 . 7319989 . 2020NatCo..11.3229J.
- Economic damages from Hurricane Sandy attributable to sea level rise caused by anthropogenic climate change . Nature Communications . 18 May 2021 . 12 . 2021NatCo..12.2720S . Strauss . Benjamin H. . Orton . Philip M. . Bittermann . Klaus . Buchanan . Maya K. . Gilford . Daniel M. . Kopp . Robert E. . Kulp . Scott . Massey . Chris . Moel . Hans de . Vinogradov . Sergey . 1 . 2720 . 10.1038/s41467-021-22838-1 . 34006886 . 8131618 . 234783225.
- News: Seabrook . Victoria . Climate change to blame for $8 billion of Hurricane Sandy losses, study finds . 9 July 2023 . Sky News . Nature Communications . 19 May 2021 . 9 July 2023 . https://web.archive.org/web/20230709130045/https://news.sky.com/story/climate-change-to-blame-for-8-billion-of-hurricane-sandy-losses-study-finds-12309974#:~:text=The%20raised%20water%20levels%20allowed,36%2C000%20homes%20and%2071%2C000%20people. . live .
- Web site: U.S Coastline to See Up to a Foot of Sea Level by 2050 . February 16, 2022 . National Oceanic and Atmospheric Administration . 15 February 2022 . 5 July 2023 . https://web.archive.org/web/20230705195211/https://www.noaa.gov/news-release/us-coastline-to-see-up-to-foot-of-sea-level-rise-by-2050 . live .
- Web site: 2022 . More Damaging Flooding, 2022 Sea Level Rise Technical Report . 2022-03-18 . . 2022-11-29 . https://web.archive.org/web/20221129070303/https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.html#step2 . live .
- Web site: Gornitz. Vivien. 2002. Impact of Sea Level Rise in the New York City Metropolitan Area. 2020-08-09. Global and Planetary Change. 2019-09-26. https://web.archive.org/web/20190926115312/https://eportfolios.macaulay.cuny.edu/bird2012/files/2012/07/Impacts-of-SLR-in-the-NYC-Metropolitan-Area.-pdf.pdf. dead.
- Hicke, J.A., S. Lucatello, L.D., Mortsch, J. Dawson, M. Domínguez Aguilar, C.A.F. Enquist, E.A. Gilmore, D.S. Gutzler, S. Harper, K. Holsman, E.B. Jewett, T.A. Kohler, and KA. Miller, 2022: Chapter 14: North America . In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, US, pp. 1929–2042
- Web site: Many Low-Lying Atoll Islands Will Be Uninhabitable by Mid-21st Century U.S. Geological Survey. 2021-12-17. www.usgs.gov. 2023-06-06. https://web.archive.org/web/20230606155303/https://www.usgs.gov/news/national-news-release/many-low-lying-atoll-islands-will-be-uninhabitable-mid-21st-century. live.
- Zhu. Bozhong. Bai. Yan. He. Xianqiang. Chen. Xiaoyan. Li. Teng. Gong. Fang. 2021-09-18. Long-Term Changes in the Land–Ocean Ecological Environment in Small Island Countries in the South Pacific: A Fiji Vision. Remote Sensing. en. 13. 18. 3740. 10.3390/rs13183740. 2021RemS...13.3740Z. 2072-4292. free.
- Sly. Peter D. Vilcins. Dwan. November 2021. Climate impacts on air quality and child health and wellbeing: Implications for Oceania. Journal of Paediatrics and Child Health. en. 57. 11. 1805–1810. 10.1111/jpc.15650. 34792251. 244271480. 1034-4810. 2021-12-17. 2023-01-23. https://web.archive.org/web/20230123144925/https://onlinelibrary.wiley.com/doi/10.1111/jpc.15650. live.
- Web site: Megan Angelo . 1 May 2009 . Honey, I Sunk the Maldives: Environmental changes could wipe out some of the world's most well-known travel destinations . https://web.archive.org/web/20120717041919/http://travel.yahoo.com/p-interests-27384279 . 17 July 2012 . 29 September 2009.
- Web site: Kristina Stefanova . 19 April 2009 . Climate refugees in Pacific flee rising sea . . 29 September 2009 . 18 October 2017 . https://web.archive.org/web/20171018075225/http://www.washingtontimes.com/news/2009/apr/19/rising-sea-levels-in-pacific-create-wave-of-migran/ . live .
- Web site: Klein . Alice . Five Pacific islands vanish from sight as sea levels rise . 2016-05-09 . New Scientist . 2020-03-31 . https://web.archive.org/web/20200331123810/https://www.newscientist.com/article/2087356-five-pacific-islands-vanish-from-sight-as-sea-levels-rise/ . live .
- Book: http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap29_FINAL.pdf. AR5 WGII. Nurse. Leonard A.. McLean. Roger. Cambridge University Press. 2014. Barros. VR. 29: Small Islands. Field. 2018-09-02. 2018-04-30. https://web.archive.org/web/20180430194832/http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap29_FINAL.pdf.
- Web site: Nations. United. Small Islands, Rising Seas. 2021-12-17. United Nations. en. 2023-05-06. https://web.archive.org/web/20230506043040/https://www.un.org/en/chronicle/article/small-islands-rising-seas. live.
- News: Besieged by the rising tides of climate change, Kiribati buys land in Fiji. Caramel. Laurence. July 1, 2014. 9 January 2023. The Guardian. 13 November 2022. https://web.archive.org/web/20221113085156/https://www.theguardian.com/environment/2014/jul/01/kiribati-climate-change-fiji-vanua-levu. live.
- Long . Maebh . Maebh Long . 2018 . Vanua in the Anthropocene: Relationality and Sea Level Rise in Fiji . Symplokē . 26 . 1–2 . 51–70 . 10.5250/symploke.26.1-2.0051 . 150286287 . 2019-10-04 . 2019-07-28 . https://web.archive.org/web/20190728152330/https://muse.jhu.edu/article/710005 . live .
- Web site: Many small island nations can adapt to climate change with global support. Grecequet. Martina. Noble. Ian. 2017-11-16. The Conversation. 2019-02-02. Hellmann. Jessica. 2020-05-27. https://web.archive.org/web/20200527091318/https://theconversation.com/many-small-island-nations-can-adapt-to-climate-change-with-global-support-86820. live.
- Web site: Adaptation to Sea Level Rise. 2018-01-11. UN Environment. 2019-02-02. 2020-08-07. https://web.archive.org/web/20200807072424/https://www.unenvironment.org/news-and-stories/video/adaptation-sea-level-rise. live.
- Thomas. Adelle. Baptiste. April. Martyr-Koller. Rosanne. Pringle. Patrick. Rhiney. Kevon. 2020-10-17. Climate Change and Small Island Developing States. Annual Review of Environment and Resources. en. 45. 1. 1–27. 10.1146/annurev-environ-012320-083355. 1543-5938. free.