A formula may be derived mathematically for the rate of scattering when a beam of electrons passes through a material.
Define the unperturbed Hamiltonian by
H0
H1
H
The eigenstates of the unperturbed Hamiltonian are assumed to be
H=H0+H1
H0|k\rang=E(k)|k\rang
In the interaction picture, the state ket is defined by
|k(t)\rangI=
iH0t/\hbar | |
e |
|k(t)\rangS=\sumk'ck'(t)|k'\rang
By a Schrödinger equation, we see
i\hbar
\partial | |
\partialt |
|k(t)\rangI=H1I|k(t)\rangI
H
H1I
Solving the differential equation, we can find the coefficient of n-state.
ck'(t)=\deltak,k'-
i | |
\hbar |
t | |
\int | |
0 |
dt' \langk'|H1(t')|k\rang
-i(Ek-Ek')t'/\hbar | |
e |
where, the zeroth-order term and first-order term are
(0) | |
c | |
k' |
=\deltak,k'
(1) | |
c | |
k' |
=-
i | |
\hbar |
t | |
\int | |
0 |
dt' \langk'|H1(t')|k\rang
-i(Ek-Ek')t'/\hbar | |
e |
The probability of finding
|k'\rang
|ck'(t)|2
In case of constant perturbation,
(1) | |
c | |
k' |
(1) | ||
c | = | |
k' |
\lang k'|H1|k\rang | |
Ek'-Ek |
i(Ek'-Ek)t/\hbar | |
(1-e |
)
|ck'(t)|2=|\lang k'|H1|k\rang
| ||||||||||||||||||
| |
1 | |
\hbar2 |
Using the equation which is
\lim\alpha
1 | |
\pi |
sin2(\alphax) | |
\alphax2 |
=\delta(x)
The transition rate of an electron from the initial state
k
k'
P(k,k')= | 2\pi |
\hbar |
|\lang k'|H1|k\rang|2\delta(Ek'-Ek)
where
Ek
Ek'
\delta
The scattering rate w(k) is determined by summing all the possible finite states k' of electron scattering from an initial state k to a final state k', and is defined by
w(k)=\sumk'P(k,k')=
2\pi | |
\hbar |
\sumk'|\lang k'|H1|k\rang|2\delta(Ek'-Ek)
The integral form is
w(k)= | 2\pi |
\hbar |
L3 | |
(2\pi)3 |
\intd3k'|\lang k'|H1|k\rang|2\delta(Ek'-Ek)