The rotating-wave approximation is an approximation used in atom optics and magnetic resonance. In this approximation, terms in a Hamiltonian that oscillate rapidly are neglected. This is a valid approximation when the applied electromagnetic radiation is near resonance with an atomic transition, and the intensity is low.[1] Explicitly, terms in the Hamiltonians that oscillate with frequencies
\omegaL+\omega0
\omegaL-\omega0
\omegaL
\omega0
The name of the approximation stems from the form of the Hamiltonian in the interaction picture, as shown below. By switching to this picture the evolution of an atom due to the corresponding atomic Hamiltonian is absorbed into the system ket, leaving only the evolution due to the interaction of the atom with the light field to consider. It is in this picture that the rapidly oscillating terms mentioned previously can be neglected. Since in some sense the interaction picture can be thought of as rotating with the system ket only that part of the electromagnetic wave that approximately co-rotates is kept; the counter-rotating component is discarded.
The rotating-wave approximation is closely related to, but different from, the secular approximation.[2]
For simplicity consider a two-level atomic system with ground and excited states
|g\rangle
|e\rangle
\hbar\omega0
\omega0
H0=
\hbar\omega0 | |e\rangle\langlee|- | |
2 |
\hbar\omega0 | |
2 |
|g\rangle\langleg|
Suppose the atom experiences an external classical electric field of frequency
\omegaL
\vec{E}(t)=\vec{E}0
-i\omegaLt | |
e |
* | |
+\vec{E} | |
0 |
i\omegaLt | |
e |
H1=-\vec{d} ⋅ \vec{E}
where
\vec{d}
H=H0+H1.
\left\langlee\left|\vec{d}\right|e\right\rangle=\left\langleg\left|\vec{d}\right|g\right\rangle=0.
\vec{d}egl{:=}\left\langlee\left|\vec{d}\right|g\right\rangle
\vec{d}=\vec{d}eg|e\rangle\langleg|+
*|g\rangle\langlee| | |
\vec{d} | |
eg |
(with
*
H1= -\hbar\left(\Omega
-i\omegaLt | |
e |
+
i\omegaLt | |
\tilde{\Omega}e |
\right)|e\rangle\langleg| -\hbar\left(\tilde{\Omega}*
-i\omegaLt | |
e |
+\Omega*e
i\omegaLt | |
\right)|g\rangle\langlee|
where
\Omega=\hbar-1\vec{d}eg ⋅ \vec{E}0
\tilde{\Omega}l{:=}\hbar-1\vec{d}eg ⋅
* | |
\vec{E} | |
0 |
\tilde{\Omega}
H1,I
H1,I= -\hbar\left(\Omegae-i\Delta+
i(\omegaL+\omega0)t | |
\tilde{\Omega}e |
\right)|e\rangle\langleg| -\hbar\left(\tilde{\Omega}*
-i(\omegaL+\omega0)t | |
e |
+\Omega*ei\Delta\right)|g\rangle\langlee|,
where
\Delta\omegal{:=}\omegaL-\omega0
This is the point at which the rotating wave approximation is made. The dipole approximation has been assumed, and for this to remain valid the electric field must be near resonance with the atomic transition. This means that
\Delta\omega\ll\omegaL+\omega0
\tilde{\Omega}
\tilde{\Omega}*
RWA | |
H | |
1,I |
= -\hbar\Omegae-i\Delta|e\rangle\langleg| -\hbar\Omega*ei\Delta|g\rangle\langlee|.
Finally, transforming back into the Schrödinger picture, the Hamiltonian is given by
HRWA=
\hbar\omega0 | |
2 |
|e\rangle\langlee| -
\hbar\omega0 | |
2 |
|g\rangle\langleg| -\hbar\Omega
-i\omegaLt | |
e |
|e\rangle\langleg| -\hbar\Omega*
i\omegaLt | |
e |
|g\rangle\langlee|.
Another criterion for rotating wave approximation is the weak coupling condition, that is, the Rabi frequency should be much less than the transition frequency.[1]
At this point the rotating wave approximation is complete. A common first step beyond this is to remove the remaining time dependence in the Hamiltonian via another unitary transformation.
Given the above definitions the interaction Hamiltonian is
\begin{align} H1=-\vec{d} ⋅ \vec{E}&=-\left(\vec{d}eg|e\rangle\langleg|+
*|g\rangle\langlee|\right) | |
\vec{d} | |
eg |
⋅ \left(\vec{E}0
-i\omegaLt | |
e |
+
* | |
\vec{E} | |
0 |
i\omegaLt | |
e |
\right)\\ &=-\left(\vec{d}eg ⋅ \vec{E}0
-i\omegaLt | |
e |
+\vec{d}eg ⋅
* | |
\vec{E} | |
0 |
i\omegaLt | |
e |
\right)|e\rangle\langleg|
* | |
-\left(\vec{d} | |
eg |
⋅ \vec{E}0
-i\omegaLt | |
e |
* | |
+\vec{d} | |
eg |
⋅
* | |
\vec{E} | |
0 |
i\omegaLt | |
e |
\right)|g\rangle\langlee|\\ &=-\hbar\left(\Omega
-i\omegaLt | |
e |
+\tilde{\Omega}
i\omegaLt | |
e |
\right)|e\rangle\langleg| -\hbar\left(\tilde{\Omega}*
-i\omegaLt | |
e |
+\Omega*
i\omegaLt | |
e |
\right)|g\rangle\langlee|, \end{align}
as stated. The next step is to find the Hamiltonian in the interaction picture,
H1,I
\begin{align}U&=
iH0t/\hbar | |
e |
\\ &=
i\omega0t/2(|e\rangle\langlee|-|g\rangle\langleg|) | |
e |
\\ &=\cos(
\omega0t | |
2 |
)\left(|e\rangle\langlee|+|g\rangle\langleg|\right)+i\sin(
\omega0t | |
2 |
)\left(|e\rangle\langlee|-|g\rangle\langleg|\right)\\ &=
-i\omega0t/2 | |
e |
|g\rangle\langleg|+
i\omega0t/2 | |
e |
|e\rangle\langlee|\\ &=
-i\omega0t/2 | |
e |
\left(|g\rangle\langleg|+
i\omega0t | |
e |
|e\rangle\langlee|\right) \end{align}
where the 3rd step can be proved by using a Taylor series expansion, and using the orthogonality of the states
|g\rangle
|e\rangle
i\omega0t/2 | |
e |
U
U
\begin{align} H1,I&\equivUH1U\dagger\\ &=-\hbar\left(\Omega
-i\omegaLt | |
e |
+
i\omegaLt | |
\tilde{\Omega}e |
i\omega0t | |
\right)e |
|e\rangle\langleg| -\hbar\left(\tilde{\Omega}*
-i\omegaLt | |
e |
+\Omega*e
i\omegaLt | |
-i\omega0t | |
\right)|g\rangle\langlee|e |
\\ &=-\hbar\left(\Omegae-i\Delta+
i(\omegaL+\omega0)t | |
\tilde{\Omega}e |
\right)|e\rangle\langleg| -\hbar\left(\tilde{\Omega}*e
-i(\omegaL+\omega0)t | |
+\Omega*ei\Delta\right)|g\rangle\langlee| . \end{align}
Now we apply the RWA by eliminating the counter-rotating terms as explained in the previous section:
RWA | |
H | |
1,I |
=-\hbar\Omegae-i\Delta\omega|e\rangle\langleg|+-\hbar\Omega*ei|g\rangle\langlee|
Finally, we transform the approximate Hamiltonian
RWA | |
H | |
1,I |
\begin{align}
RWA | |
H | |
1 |
&=U\dagger
RWA | |
H | |
1,I |
U\\ &=-\hbar\Omegae-i\Delta
-i\omega0t | |
e |
|e\rangle\langleg| -\hbar\Omega*ei\Delta
i\omega0t | |
|g\rangle\langlee|e |
\\ &=-\hbar\Omega
-i\omegaLt | |
e |
|e\rangle\langleg| -\hbar\Omega*
i\omegaLt | |
e |
|g\rangle\langlee|. \end{align}
The atomic Hamiltonian was unaffected by the approximation, so the total Hamiltonian in the Schrödinger picture under the rotating wave approximation is
HRWA=H0+
RWA | |
H | |
1 |
=
\hbar\omega0 | |
2 |
|e\rangle\langlee|-
\hbar\omega0 | |
2 |
|g\rangle\langleg|- \hbar\Omega
-i\omegaLt | |
e |
|e\rangle\langleg|- \hbar\Omega*e
i\omegaLt | |
|g\rangle\langlee|.