The rings of Uranus are intermediate in complexity between the more extensive set around Saturn and the simpler systems around Jupiter and Neptune. The rings of Uranus were discovered on March 10, 1977, by James L. Elliot, Edward W. Dunham, and Jessica Mink. William Herschel had also reported observing rings in 1789; modern astronomers are divided on whether he could have seen them, as they are very dark and faint.[1]
By 1977, nine distinct rings were identified. Two additional rings were discovered in 1986 in images taken by the Voyager 2 spacecraft, and two outer rings were found in 2003–2005 in Hubble Space Telescope photos. In the order of increasing distance from the planet the 13 known rings are designated 1986U2R/ζ, 6, 5, 4, α, β, η, γ, δ, λ, ε, ν and μ. Their radii range from about 38,000 km for the 1986U2R/ζ ring to about 98,000 km for the μ ring. Additional faint dust bands and incomplete arcs may exist between the main rings. The rings are extremely dark—the Bond albedo of the rings' particles does not exceed 2%. They are probably composed of water ice with the addition of some dark radiation-processed organics.
The majority of Uranus' rings are opaque and only a few kilometres wide. The ring system contains little dust overall; it consists mostly of large bodies 20 cm to 20 m in diameter. Some rings are optically thin: the broad and faint 1986U2R/ζ, μ and ν rings are made of small dust particles, while the narrow and faint λ ring also contains larger bodies. The relative lack of dust in the ring system may be due to aerodynamic drag from the extended Uranian exosphere.
The rings of Uranus are thought to be relatively young, and not more than 600 million years old. The Uranian ring system probably originated from the collisional fragmentation of several moons that once existed around the planet. After colliding, the moons probably broke up into many particles, which survived as narrow and optically dense rings only in strictly confined zones of maximum stability.
The mechanism that confines the narrow rings is not well understood. Initially it was assumed that every narrow ring had a pair of nearby shepherd moons corralling it into shape. In 1986 Voyager 2 discovered only one such shepherd pair (Cordelia and Ophelia) around the brightest ring (ε), though the faint ν would later be discovered shepherded between Portia and Rosalind.[2]
The first mention of a Uranian ring system comes from William Herschel's notes detailing his observations of Uranus in the 18th century, which include the following passage: "February 22, 1789: A ring was suspected".[1] Herschel drew a small diagram of the ring and noted that it was "a little inclined to the red". The Keck Telescope in Hawaii has since confirmed this to be the case, at least for the ν (nu) ring. Herschel's notes were published in a Royal Society journal in 1797. In the two centuries between 1797 and 1977 the rings are rarely mentioned, if at all. This casts serious doubt on whether Herschel could have seen anything of the sort while hundreds of other astronomers saw nothing. It has been claimed that Herschel gave accurate descriptions of the ε ring's size relative to Uranus, its changes as Uranus travelled around the Sun, and its color.[3]
The definitive discovery of the Uranian rings was made by astronomers James L. Elliot, Edward W. Dunham, and Jessica Mink on March 10, 1977, using the Kuiper Airborne Observatory, and was serendipitous. They planned to use the occultation of the star SAO 158687 by Uranus to study the planet's atmosphere. When their observations were analysed, they found that the star disappeared briefly from view five times both before and after it was eclipsed by the planet. They deduced that a system of narrow rings was present.[4] The five occultation events they observed were denoted by the Greek letters α, β, γ, δ and ε in their papers.[5] These designations have been used as the rings' names since then. Later they found four additional rings: one between the β and γ rings and three inside the α ring.[6] The former was named the η ring. The latter were dubbed rings 4, 5 and 6—according to the numbering of the occultation events in one paper.[7] Uranus' ring system was the second to be discovered in the Solar System, after that of Saturn. In 1982, on the fifth anniversary of the rings' discovery, Uranus along with the eight other planets recognized at the time (i.e. including Pluto) aligned on the same side of the Sun.[8] [9]
The rings were directly imaged when the Voyager 2 spacecraft flew through the Uranian system in 1986. Two more faint rings were revealed, bringing the total to eleven. The Hubble Space Telescope detected an additional pair of previously unseen rings in 2003–2005, bringing the total number known to 13. The discovery of these outer rings doubled the known radius of the ring system. Hubble also imaged two small satellites for the first time, one of which, Mab, shares its orbit with the outermost newly discovered μ ring.[10]
As currently understood, the ring system of Uranus comprises thirteen distinct rings. In order of increasing distance from the planet they are: 1986U2R/ζ, 6, 5, 4, α, β, η, γ, δ, λ, ε, ν, μ rings. They can be divided into three groups: nine narrow main rings (6, 5, 4, α, β, η, γ, δ, ε), two dusty rings (1986U2R/ζ, λ) and two outer rings (ν, μ). The rings of Uranus consist mainly of macroscopic particles and little dust, although dust is known to be present in 1986U2R/ζ, η, δ, λ, ν and μ rings. In addition to these well-known rings, there may be numerous optically thin dust bands and faint rings between them. These faint rings and dust bands may exist only temporarily or consist of a number of separate arcs, which are sometimes detected during occultations. Some of them became visible during a series of ring plane-crossing events in 2007.[11] A number of dust bands between the rings were observed in forward-scattering[12] geometry by Voyager 2. All rings of Uranus show azimuthal brightness variations.
The rings are made of an extremely dark material. The geometric albedo of the ring particles does not exceed 5–6%, while the Bond albedo is even lower—about 2%.[13] The rings particles demonstrate a steep opposition surge—an increase of the albedo when the phase angle is close to zero. This means that their albedo is much lower when they are observed slightly off the opposition.[14] The rings are slightly red in the ultraviolet and visible parts of the spectrum and grey in near-infrared.[15] They exhibit no identifiable spectral features. The chemical composition of the ring particles is not known. They cannot be made of pure water ice like the rings of Saturn because they are too dark, darker than the inner moons of Uranus.[15] This indicates that they are probably composed of a mixture of the ice and a dark material. The nature of this material is not clear, but it may be organic compounds considerably darkened by the charged particle irradiation from the Uranian magnetosphere. The rings' particles may consist of a heavily processed material which was initially similar to that of the inner moons.[15]
As a whole, the ring system of Uranus is unlike either the faint dusty rings of Jupiter or the broad and complex rings of Saturn, some of which are composed of very bright material—water ice. There are similarities with some parts of the latter ring system; the Saturnian F ring and the Uranian ε ring are both narrow, relatively dark and are shepherded by a pair of moons. The newly discovered outer ν and μ rings of Uranus are similar to the outer G and E rings of Saturn. Narrow ringlets existing in the broad Saturnian rings also resemble the narrow rings of Uranus. In addition, dust bands observed between the main rings of Uranus may be similar to the rings of Jupiter. In contrast, the Neptunian ring system is quite similar to that of Uranus, although it is less complex, darker and contains more dust; the Neptunian rings are also positioned further from the planet.
The ε ring is the brightest and densest part of the Uranian ring system, and is responsible for about two-thirds of the light reflected by the rings.[15] While it is the most eccentric of the Uranian rings, it has negligible orbital inclination.[16] The ring's eccentricity causes its brightness to vary over the course of its orbit. The radially integrated brightness of the ε ring is highest near apoapsis and lowest near periapsis. The maximum/minimum brightness ratio is about 2.5–3.0. These variations are connected with the variations of the ring width, which is 19.7 km at the periapsis and 96.4 km at the apoapsis. As the ring becomes wider, the amount of shadowing between particles decreases and more of them come into view, leading to higher integrated brightness.[13] The width variations were measured directly from Voyager 2 images, as the ε ring was one of only two rings resolved by Voyager's cameras. Such behavior indicates that the ring is not optically thin. Indeed, occultation observations conducted from the ground and the spacecraft showed that its normal optical depth varies between 0.5 and 2.5, being highest near the periapsis. The equivalent depth