In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces.[1] Calculating and visualizing the resultant force on a body is done through computational analysis, or (in the case of sufficiently simple systems) a free body diagram.
The point of application of the resultant force determines its associated torque. The term resultant force should be understood to refer to both the forces and torques acting on a rigid body, which is why some use the term resultant force–torque.
The force equal to the resultant force in magnitude, yet pointed in the opposite direction, is called an equilibrant force.
The diagram illustrates simple graphical methods for finding the line of application of the resultant force of simple planar systems.
{\scriptstyle\vec{F}1
\scriptstyle\vec{F}2
\scriptstyle\vec{F}1
\scriptstyle\vec{F}R
\scriptstyle\vec{F}2
\scriptstyle\vec{F}R
\scriptstyle\tau=Fd
\scriptstyled
A force applied to a body has a point of application. The effect of the force is different for different points of application. For this reason a force is called a bound vector, which means that it is bound to its point of application.
Forces applied at the same point can be added together to obtain the same effect on the body. However, forces with different points of application cannot be added together and maintain the same effect on the body.
It is a simple matter to change the point of application of a force by introducing equal and opposite forces at two different points of application that produce a pure torque on the body. In this way, all of the forces acting on a body can be moved to the same point of application with associated torques.
A system of forces on a rigid body is combined by moving the forces to the same point of application and computing the associated torques. The sum of these forces and torques yields the resultant force-torque.
If a point R is selected as the point of application of the resultant force F of a system of n forces Fi then the associated torque T is determined from the formulas
F=
n | |
\sum | |
i=1 |
Fi,
T=
n | |
\sum | |
i=1 |
(Ri-R) x Fi.
It is useful to note that the point of application R of the resultant force may be anywhere along the line of action of F without changing the value of the associated torque. To see this add the vector kF to the point of application R in the calculation of the associated torque,
T=
n | |
\sum | |
i=1 |
(Ri-(R+kF)) x Fi.
T=
n | |
\sum | |
i=1 |
(Ri-R) x Fi-
n | |
\sum | |
i=1 |
kF x Fi=\sum
n | |
i=1 |
(Ri-R) x Fi,
n | |
\sum | |
i=1 |
kF x Fi=
n | |
kF x (\sum | |
i=1 |
Fi)=0,
It is useful to consider whether there is a point of application R such that the associated torque is zero. This point is defined by the property
R x F=
n | |
\sum | |
i=1 |
Ri x Fi,
Notice that this equation for R has a solution only if the sum of the individual torques on the right side yield a vector that is perpendicular to F. Thus, the condition that a system of forces has a torque-free resultant can be written as
n | |
F ⋅ (\sum | |
i=1 |
Ri x Fi)=0.
The forces and torques acting on a rigid body can be assembled into the pair of vectors called a wrench.[2] If a system of forces and torques has a net resultant force F and a net resultant torque T, then the entire system can be replaced by a force F and an arbitrarily located couple that yields a torque of T. In general, if F and T are orthogonal, it is possible to derive a radial vector R such that
R x F=T
W=
n | |
\sum | |
i=1 |
Wi=
n | |
\sum | |
i=1 |
(Fi,Ri x Fi).