Martin Hairer's theory of regularity structures provides a framework for studying a large class of subcritical parabolic stochastic partial differential equations arising from quantum field theory.[1] The framework covers the Kardar–Parisi–Zhang equation, the
4 | |
\Phi | |
3 |
Hairer won the 2021 Breakthrough Prize in mathematics for introducing regularity structures.[2]
A regularity structure is a triple
l{T}=(A,T,G)
A
R
T= ⊕ \alphaT\alpha
T\alpha
G
\Gamma\colonT\toT
\alpha\inA
\tau\inT\alpha
(\Gamma-1)\tau\in ⊕ \beta<\alphaT\beta
A further key notion in the theory of regularity structures is that of a model for a regularity structure, which is a concrete way of associating to any
\tau\inT
x0\inRd
x0
\tau
l{T}=(A,T,G)
Rd
d\geq1
\Pi\colonRd\toLin(T;l{S}'(Rd))
\Gamma\colonRd x Rd\toG
\Pi
x
\Pix
T
Rd
\Gamma
x
y
\Gammax
y
x
\Pi
\Gamma
\Gammax\Gammay=\Gammax
\Pix\Gammax=\Piy
r>|infA|
K\subsetRd
\gamma>0
C>0
|(\Pix\tau)
λ | |
\varphi | |
x |
|\leqCλ|\tau|\|\tau
\| | |
T\alpha |
\|\Gammax\tau
\| | |
T\beta |
\leqC|x-y|\alpha\|\tau
\| | |
T\alpha |
r
\varphi\colonRd\toR
l{C}r
Rd
x,y\inK
0<λ\leq1
\tau\inT\alpha
\beta<\alpha\leq\gamma
λ | |
\varphi | |
x |
\colonRd\toR
\varphi
λ | |
\varphi | |
x |
(y)=λ-d\varphi\left(
y-x | |
λ |
\right)