Rectified 5-cubes explained
In five-dimensional
geometry, a
rectified 5-cube is a convex
uniform 5-polytope, being a
rectification of the regular
5-cube.
There are 5 degrees of rectifications of a 5-polytope, the zeroth here being the 5-cube, and the 4th and last being the 5-orthoplex. Vertices of the rectified 5-cube are located at the edge-centers of the 5-cube. Vertices of the birectified 5-cube are located in the square face centers of the 5-cube.
Rectified 5-cube
Alternate names
- Rectified penteract (acronym: rin) (Jonathan Bowers)
Construction
The rectified 5-cube may be constructed from the 5-cube by truncating its vertices at the midpoints of its edges.
Coordinates
The Cartesian coordinates of the vertices of the rectified 5-cube with edge length
is given by all permutations of:
(0, \pm1, \pm1, \pm1, \pm1)
Images
Birectified 5-cube
E. L. Elte identified it in 1912 as a semiregular polytope, identifying it as Cr52 as a second rectification of a 5-dimensional cross polytope.
Alternate names
- Birectified 5-cube/penteract
- Birectified pentacross/5-orthoplex/triacontiditeron
- Penteractitriacontiditeron (acronym: nit) (Jonathan Bowers)
- Rectified 5-demicube/demipenteract
Construction and coordinates
The birectified 5-cube may be constructed by birectifying the vertices of the 5-cube at
of the edge length.
The Cartesian coordinates of the vertices of a birectified 5-cube having edge length 2 are all permutations of:
\left(0, 0, \pm1, \pm1, \pm1\right)
Related polytopes
Related polytopes
These polytopes are a part of 31 uniform polytera generated from the regular 5-cube or 5-orthoplex.
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- o3x3o3o4o - rin, o3o3x3o4o - nit
External links