Rectified 120-cell explained
In
geometry, a
rectified 120-cell is a
uniform 4-polytope formed as the
rectification of the regular
120-cell.
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC120.
There are four rectifications of the 120-cell, including the zeroth, the 120-cell itself. The birectified 120-cell is more easily seen as a rectified 600-cell, and the trirectified 120-cell is the same as the dual 600-cell.
Rectified 120-cell
In
geometry, the
rectified 120-cell or
rectified hecatonicosachoron is a convex
uniform 4-polytope composed of 600 regular
tetrahedra and 120
icosidodecahedra cells. Its vertex figure is a
triangular prism, with three icosidodecahedra and two tetrahedra meeting at each vertex.
Alternative names:
- Rectified 120-cell (Norman Johnson)
- Rectified hecatonicosichoron / rectified dodecacontachoron / rectified polydodecahedron
- Icosidodecahedral hexacosihecatonicosachoron
- Rahi (Jonathan Bowers: for rectified hecatonicosachoron)
- Ambohecatonicosachoron (Neil Sloane & John Horton Conway)
References
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
External links
-
- H4 uniform polytopes with coordinates: r